DOI QR코드

DOI QR Code

Synthesis of Silver Nano-particles by Homogeneous Precipitation

균일 침전법에 의한 은 나노 입자 합성

  • Kang, Won-Mo (Department of Applied Chemistry, Hanyang University) ;
  • Kim, Ho-Kun (Department of Applied Chemistry, Hanyang University)
  • Published : 2008.10.28

Abstract

Silver particles were synthesized from silver nitrate by homogeneous precipitation and chemical reduction methods involving the intermediate silver cyanate. The obtained silver particles were characterized by XRD, SEM, TEM, and BET. Urea which could prevent the agglomeration of the reduced silver particles was used as a homogeneous precipitator. The spherical silver particles with average particle diameter of 100 nm were obtained under the optimum reaction conditions. The optimum synthetic conditions were found as follows: reaction temperature $100^{\circ}C$, reaction time 60 min, concentration of silver nitrate $1{\times}10^{-2}$ mol, urea $5{\times}10^{-3}$ mol, and sodium citrate $8.5{\times}10^{-4}$ mol. The phase of obtained silver particles was crystalline state and the silver particles were relatively dense, which had the surface area of $0.7571\;m^{2}/g$.

Keywords

References

  1. A. Henglein, P. Mulvaney and T. Linnert: Electrochimica Acta, 36 (1991) 1743 https://doi.org/10.1016/0013-4686(91)85037-8
  2. Y. Volokitin, J. Sinzig, L. J. de Jongh, G Schmid, M. N. Vargaftik and I. I. Moiseev: Nature, 384 (1996) 621 https://doi.org/10.1038/384621a0
  3. K. Ito, I. Tsuyumoto, A. Harata and T. Sawada: Chem. Phys. Lett., 318 (2000) 1 https://doi.org/10.1016/S0009-2614(99)01439-6
  4. Z. Zhang, B. Zhao and L. Hu: J. Solid State Chem., 121 (1996) 105 https://doi.org/10.1006/jssc.1996.0015
  5. K. S. Chou and C. Y. Ren: Mater. Chem. Phy., 64 (2000) 241 https://doi.org/10.1016/S0254-0584(00)00223-6
  6. K. S. Yun, Y. C. Park, B. S. Yang, H. H. Min and C. W. Won: J. Korean Powder metall. Inst., 12 (2005) 56 (Korean) https://doi.org/10.4150/KPMI.2005.12.1.056
  7. K. Esumi, T. Tano, K. Torigoe and K. Meguro: Chem. Mater., 2 (1990) 564 https://doi.org/10.1021/cm00011a019
  8. Y. Y. Yu, S. S. Chang, C. L. Lee and C. R. Chris Wang: J. Phys. Chem. B, 101 (1997) 6661 https://doi.org/10.1021/jp971656q
  9. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng and G. Q. XU: Langmuir, 12 (1996) 909 https://doi.org/10.1021/la950435d
  10. Y. H. Kim: Kongop Hwahak, 14 (2003) 487
  11. E. Matijevic, R. S. Sapieszko and J. B. Melville: J. Colloid and Interface Sci., 50 (1975) 567 https://doi.org/10.1016/0021-9797(75)90180-0
  12. A. Ookubo, K. Ooi and T. Tomita: J. Mater. Sci., 24 (1989) 3599 https://doi.org/10.1007/BF02385745
  13. G. Soler-Illia, M. Jobbagy, R. J. Candal, A. E. Regazzoni and M. A. Blesa: J. Dispers. Sci. Technol., 19 (1998) 207 https://doi.org/10.1080/01932699808913172
  14. S. Sohn, Y. Kwon, Y. Kim and D. Kim: Powder Technol., 142 (2004) 136 https://doi.org/10.1016/j.powtec.2004.03.013
  15. H. H. Nersisyan, J. H. Lee, H. T. Son, C. W. Won and D. Y. Maeng: Materials Research Bulletin, 38 (2003) 949 https://doi.org/10.1016/S0025-5408(03)00078-3
  16. A. B. R. Mayer, W. Grebner and R. Wannemacher: J. Phys. Chem. B, 104 (2000) 7278 https://doi.org/10.1021/jp000568u
  17. J. P. Chen and L. L. Lim: Chemosphere, 49 (2002) 363 https://doi.org/10.1016/S0045-6535(02)00305-3
  18. S. Kapoor: Langmuir, 14 (1998) 1021 https://doi.org/10.1021/la9705827
  19. P. C. Lee and D. J. Meisel: Phys. Chem., 86 (1982) 3391 https://doi.org/10.1021/j100214a025
  20. IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry: Pure Appl. Chem., 31 (1972) 578 https://doi.org/10.1351/pac197231040577
  21. E. P. Barrett, L. G. Joyner and P. P. Halenda: J. Am. Chem. Soc., 73 (1951) 373 https://doi.org/10.1021/ja01145a126