Generation of Transgenic Chickens that Produce Bioactive Human Thrombopoietin

재조합 hTPO를 생산하는 형질전환 닭의 개발

  • Kwon, Mo-Sun (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Koo, Bon-Chul (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Roh, Ji-Yeol (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Lee, Hyun-A (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Kim, Te-Oan (Department of Physiology, Catholic University of Daegu School of Medicine)
  • 권모선 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 구본철 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 노지열 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 이현아 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 김태완 (대구가톨릭대학교 의과대학 생리학교실)
  • Published : 2008.09.30

Abstract

We report here the generation of transgenic chickens that produce human Thrombopoietin (hTPO) using replication-defective Moloney murine leukemia virus (MoMLV)-based vectors packaged with vesicular stomatitis virus G glycoprotein (VSV-G). For the retrovirus vectors, we used hCMV (human Cytomegalovirus) internal promoter to drive the hTPO gene. After confirming the expression of the hTPO gene in various target cells, the concentrated solution of recombinant retrovirus was injected beneath the blastoderm of non-incubated chicken embryos (stage X). The biological activity of the recombinant hTPO in target cell was significantly higher than its commercially available counterpart. Out of 132 injected eggs, 11 chicks hatched after 21 days of incubation and 4 hatched chicks were found to express vector-encoded hTPO gene. However, 3 out of the 4 transgenics died within one month of hatching. The major significance of this study is that it is one of the very few successful reports on the production of transgenic chickens as bioreactors aiming mass production of commercially valuable and biological active human cytokine proteins.

본 연구는 vesicular stomatitis virus G glycoprotein (VSV-G)으로 피막이 형성되는 replication-defective MoMLV-based vector를 이용한 hTPO 헝질전환 닭의 생산에 관한 연구이다. 실험에 사용한 retrovirus vector의 구조는 hTPO 유전자의 발현 조절을 위해 internal promoter인 hCMV promoter를 이용하였으며 외래 유전자의 발현을 증가시키기 위해 woodchurk hepatitis virus posttranascriptional regulatory element (WPRE) 서열을 도입하였다. 재조합한 vector는 GP2 293 포장세포에 도입하여 virus를 생산하였으며 이 virus를 이용하여 감염시킨 여러 표적세포에서 hTPO의 발현과 생물학적 활성을 확인하였다. 재조합 hTPO의 생물학적 활성은 시판되고 있는 재조합 hTPO에 비해 우월한 것으로 확인되었다. hTPO 형질전환 닭의 생산을 위하여 1,000배 이상 고농도로 농축된 virus를 stage X 단계의 계란의 배반엽 층에 미세주입하여 대리난각 방법으로 배양하였다. 미세주입한 132개의 계란 중 21일 후에 11개의 계란에서 병아리가 부화하였으며 그중 4마리가 형질전환 개체로 확인되었다. 그러나 생산된 4마리 중 3마리가 부화 후 1개월 이내에 원인불명으로 사망하였다. 본 연구의 의의는 상업적 이용 가능성이 있는 생물학적 활성을 가진 사람의 cytokine 단백질의 대량 생산을 위한 생체 반응기로서의 형질전환 닭 개발의 시례를 제공하는데 있다.

Keywords

References

  1. Archibald AL, McClenaghan M, Hornsey V, Simons JP, Clark AJ (1990): High-level expression of biologically active human alpha 1-antitrypsin in the milk of transgenic mice. Proc Natl Acad Sci USA 87:5178-5182
  2. Avanzi GC, Lista P, Giovinazzo B, Moniero R, Saglio G, Benetton G, Codd R, Cattoretti G, Pegoraro L (1988): Selective growth response to IL-3 of a human leukaemic cell line with megakaryoblastic features. Br J Haematol 69:359 https://doi.org/10.1111/j.1365-2141.1988.tb02374.x
  3. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993): Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90:8033-8037
  4. Clark AJ (1998): The mammary gland as a bioreactor: Expression, processing and production of recombinant proteins. J Mammary Gland Biol Neoplasia 3:337-350 https://doi.org/10.1023/A:1018723712996
  5. Ebert KM, Low MJ, Overstrom EW, Buonomo FC, Baile CA, Roberts TM, Lee A, Mandel G, Goodman RH (1988): A moloney MLV-rat somatotropin fusion gene produces biologically active somatotropin in a transgenic pig. Mol Endocrinol 2:277-283 https://doi.org/10.1210/mend-2-3-277
  6. Edmunds T, Van Patten SM, Pollock J, Hanson E, Bernasconi R, Higgins E, Manavalan P, Ziomek C, Meade H, McPherson J, Cole ES (2005): Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin. Blood 91:4561-4571
  7. Eyal-Giladi H, Ginsburg M, Fabarov A (1981): Avian primordial germ cells are of epiblastic origin. J Embryol Exp Morph 65:139-147
  8. Eyal-Giladi H, Kochav S (1976): From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. Dev Biol 49:321-337 https://doi.org/10.1016/0012-1606(76)90178-0
  9. Fontes CM, Ali S, Gilbert HJ, Hazlewood GP, Hirst BH, Hall J (1999): Bacterial xylanase expression in mammalian cells and transgenic mice. J Biotechnol 72:95-101 https://doi.org/10.1016/S0168-1656(99)00098-X
  10. Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003): Production of complex human glycoproteins in yeast. Science 301:1244-1246 https://doi.org/10.1126/science.1088166
  11. Han JY, Shoffner RN Guise KS (1994): Microinjection and expression of marker gene in the early chicken embryo. Korean J Animal Sci 36:244-251
  12. Harvey AJ, Speksnijder G, Baugh LR, Morris JA, Ivarie R (2002): Expression of exogenous protein in the egg white of transgenic chickens. Nat Biotechnol 20:396-399 https://doi.org/10.1038/nbt0402-396
  13. Houdebine LM (2002): Antibody manufacture in transgenic animals and comparisons with other systems. Curr Opin Biotechnol 13:625-629 https://doi.org/10.1016/S0958-1669(02)00362-2
  14. Houdebine LM (2006): Transgenic animal models and target validation. Methods Mol Biol 360:163-202
  15. Houdebine LM (2008): Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis doi:10.1016/j.cimid.2007.11. 005
  16. Ivarie R (2003): Avian transgenesis: progress towards the promise. Trends Biotechnol 21:14-19 https://doi.org/10.1016/S0167-7799(02)00009-4
  17. Jahner D, Stuhlmann H, Stewart CL, Harbers K, Lohler J, Simon I, Jaenisch R (1982): De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623-628 https://doi.org/10.1038/298623a0
  18. Kamihira M, Ono KI, Esaka K, Nishijima KI, Kigaku R, Komatsu H, Yamashita T, Kyogoku K, Iijima S (2005): High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retro viral vector. J Virol 79:10864-10874 https://doi.org/10.1128/JVI.79.17.10864-10874.2005
  19. Kaushansky K (1998): Thrombopietin. N Engl J Med 339:746-754 https://doi.org/10.1056/NEJM199809103391107
  20. Kim T (2002): Retrovirus-mediated gene transfer. In: Pinkert CA (eds.). Transgenic Animal Technology. 2nd ed. Academic Press, San Diego, USA, pp 173-193
  21. Kodama D, Nishimiya D, Iwata K, Yamaguchi K, Yoshida K, Kawabe Y, Motono M, Watanabe H, Yamashita T, Nishijima K, Kamihira M, Iijima S (2008): Production of human erythropoietin by chimeric chickens. Biochem Biophys Res Commun 367:834-839 https://doi.org/10.1016/j.bbrc.2008.01.020
  22. Koo BC, Kwon MS, Choi BR, Kim JH, Cho SK, Sohn SH, Cho EJ, Lee HT, Chang W, Jeon I, Park JK, Park JB, Kim T (2006): Production of germline transgenic chickens expressing enhanced green fluorescent protein using a MoMLV-based retrovirus vector. FASEB J 20:2251-2260 https://doi.org/10.1096/fj.06-5866com
  23. Kwon MS, Koo BC, Choi BR, Kim JH, Park Y-Y, Lee YM, Suh HS, Park YS, Lee HT, Kim J-H, Roh JY, Kim N-H, Kim T (2008): Generation of transgenic chickens that produce bioactive human granulocyte- colony stimulating factor. Mol Reprod Dev 75:1120-1126 https://doi.org/10.1002/mrd.20860
  24. Kwon MS, Koo BC, Choi BR, Lee HT, Kim YH, Ryu WS, Shim H, Kim JH, Kim NH, Kim T (2004): Development of transgenic chickens expressing enhanced green fluorescent protein. Biochem Biophys Res Commun 320:442-448 https://doi.org/10.1016/j.bbrc.2004.05.197
  25. Lillico SG, McGrew MJ, Sherman A, Sang HM (2005): Transgenic chickens as bioreactors for protein- based drugs. Drug Discov Today 10:191-196 https://doi.org/10.1016/S1359-6446(04)03317-3
  26. Ma S, Jevnikar AM (2005): Transgenic rice for allergy immunotherapy. Proc Natl Acad Sci USA 102:17255-17256
  27. Massoud M, Attal J, Thepot D, Pointu H, Stinnakre MG, Theron MC, Lopez C, Houdebine LM (1996): The deleterious effects of human erythropoietin gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits. Reprod Nutr Dev 36:555-563 https://doi.org/10.1051/rnd:19960511
  28. McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang H (2004): Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728-733 https://doi.org/10.1038/sj.embor.7400171
  29. Mizuarai S, Ono K, Yamaguchi K, Nishijima K, Kamihara M, Iijima S (2001): Production of transgenic quails with high frequency of germ-line transmission using VSV-G pseudotyped retroviral vector. Biochem Biophys Res Commun 286:456-463 https://doi.org/10.1006/bbrc.2001.5422
  30. Naito M, Tagima A, Tagima T, Yasuda Y, Kuwana T (1994): Preservation of chick primordial germ cells in liquid nitrogen and subsequent production of viable offspring. J Reprod Fertil 102:321-325 https://doi.org/10.1530/jrf.0.1020321
  31. Park TS, Jeong DK, Kim JN, Song GH, Hong YH, Lim JM, Han JY (2003): Improved germline transmission in chicken chimeras produced by transplantation of gonadal primordial germ cells into recipient embryos. Biol Reprod 68:1657-1662 https://doi.org/10.1095/biolreprod.102.006825
  32. Petitte JN, Mozdziak PE (2002): Transgenic chickens as bioreactors for protein-based drugs. In Pinkert CA, editor. Transgenic Animal Technology, 2nd edn. San Diego: Academic Press. p279-306
  33. Qian S, Fu F, Li W, Chen Q, deSauvage FJ (1998): Primary role of the river in thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 87:4998-5005
  34. Raju TS, Briggs JB, Borge SM, Jones AJ (2000): Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch- specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10:477-486 https://doi.org/10.1093/glycob/10.5.477
  35. Sitnicka E, Lin N, Priestley GV, Fox N, Broudy VC, Wolf NS, Kaushansky K (1996): The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 87:4998-5005
  36. Sohn BH, Kim SJ, Park H, Park SK, Lee SC, Hong HJ, Park YS, Lee K-K (1999): Expression and characterization of bioactive human thrombopoietin in the milk of transgenic mice. DNA Cell Biol 18: 845-852 https://doi.org/10.1089/104454999314845
  37. Thiel KA (2004): Biomanufacturing from bust to boom... to bubble? Nat Biotechnol 22:1365-1372 https://doi.org/10.1038/nbt1104-1365
  38. Vadhan-Raj S, Verschraegen CF, Bueso-Ramos C, Broxmeyer HE, Kudelka AP, Freedman RS, Edwards CL, Gershenson D, Jones D, Ashby M, Kavanagh JJ (2000): Recombinant human thrombopoietin attenuates carboplatin-induced severe thrombocytopenia and the need for platelet transfusions in patients with gynecologic cancer. Ann Intern Med 132:364-368
  39. Van de Lavoir MC, Diamond JH, Leighton PA, Mather- Love CM, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ (2006): Germline transmission of genetically modified primordial germ cells. Nature 441: 766-769 https://doi.org/10.1038/nature04831
  40. Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A, Van der Ploeg AT (2000): Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 356:397-398 https://doi.org/10.1016/S0140-6736(00)02533-2
  41. Zhu L, van de Lavoir MC, Albanese J, Beenhouwer DO, Cardarelli PM, Cuison S, Deng DF, Deshpande S, Diamond JH, Green L, Halk EL, Heyer BS, Kay RM, Kerchner A, Leighton PA, Mather‐ Love CM, Morrison SL, Nikolov ZL, Passmore DB, Pradas‐Monne A, Preston BT, Rangan VS, Shi M, Srinivasan M, White SG, Winters‐Digiacinto P, Wong S, Zhou W, Etches RJ (2005): Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol 23:1159‐1169
  42. Zufferey R, Donello JE, Trono D, Hope TJ (1999): Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886-2892