DOI QR코드

DOI QR Code

입도에 따른 Flake Sendust 전파 흡수체의 특성 분석

Analysis of Properties of Flake Sendust EM Wave Absorber according to Granularity

  • 박수훈 (한국해양대학교 전파공학과) ;
  • 김동일 (한국해양대학교 전파공학과) ;
  • 최동한 (한국해양대학교 전파공학과) ;
  • 김성연 (한국해양대학교 산업기술연구소)
  • Park, Soo-Hoon (Department of Radio Communication Engineering, Korea Maritime University) ;
  • Kim, Dong-Il (Department of Radio Communication Engineering, Korea Maritime University) ;
  • Choi, Dong-Han (Department of Radio Communication Engineering, Korea Maritime University) ;
  • Kim, Seong-Yeon (Research Institute of Industrial Technology, Korea Maritime University)
  • 발행 : 2008.09.30

초록

본 논문에서는 연자성 금속 분말인 sendust를 flake화 과정을 통하여 형상과 입도를 변화시켜 전파 흡수체를 제작하고, 그 특성을 분석하였다. 먼저 attrition milling에 의해 입도를 달리한 세 종류의 flake sendust 분말과 지지 재인 CPE(Chlorinated Polyethylene)를 이용하여 전파 흡수체를 제작하고, 이 전파 흡수체로부터 재료 정수를 계산하여 입도에 따른 변화를 조사한 후 전파 흡수능을 측정하여 비교 분석하였다. 그 결과 평균 입도가 $140{\mu}m$인 flake sendust 분말로 제작된 전파 흡수체가 와전류 손실의 감소(복소비 투자율 증가)와 입자간의 정전 용량의 증가(복소비 유전율 증가)에 기인하여 고주파 대역에서 우수한 전파 흡수능을 보임을 확인하였다.

In this paper, we analyzed the characteristics of the EM wave absorber which was fabricated by using flake sendust (soft metal magnetic powder). The flake sendust was made of 3 different granularity by attrition mill. First, we have fabricated 3 kind of EM wave absorbers using the flake sendust and CPE(Chlorinated Polyethylene) and measured the S-parameters of the EM wave absorber. The complex relative permittivity and permeability were calculated from the measured data and the variations according to a change of granularity were researched. As a result, it was confirmed that the EM wave absorber using flake sendust with the $140{\mu}m$ average granularity has outstanding absorption ability in high frequency range(C band) for the reduction of eddy current loss(increase of permeability) and the increase of space charge polarization(increase of permittivity).

키워드

참고문헌

  1. B. Zhang, G. Lu, and Y. Feng, "Electromagnetic and microwave absorption properties of Alnico powder composites", Journal of Magnetism and Magnetic Materials 299, pp. 205-210, 2006 https://doi.org/10.1016/j.jmmm.2005.04.003
  2. S. S. Kim, D. H. Han, and S. B. Jo, "Microwave absorbing properties of sintered Ni-Zn ferrites", IEEE Trans. Mag.k 30, pp. 4554-4556, 1994 https://doi.org/10.1109/20.334146
  3. J. L. Snoek, "Dispersion and absorption in magnetic ferrite at frequency above one Mc/s", Physica, vol. 14, pp. 207-217, 1948 https://doi.org/10.1016/0031-8914(48)90038-X
  4. O. Hashimoto, et al., Technologies & Applications of Wave Absorber, CMC Publication Co., pp. 132- 142, 2004
  5. T. H. Noh, T. G. Lee, "Effects of annealing temperature on electromagnetic wave absorption characteristics in FeCuNbSiB alloy flakes/polymer composite sheets", Journal of the Korea Magnetics Society, vol. 17, no. 5, 2007 https://doi.org/10.4283/JKMS.2007.17.5.198
  6. S. T. Kim, S. K. Kim, and S. S. Kim, "Microwave absorbing properties of iron particles-rubber composites in mobile telecommunication frequency band", Journal of the Korea Magnetics Society, vol. 14, no. 4, 2004
  7. S. H. Moon, S. J. Shin, J. M. Song, D. I. Kim, and K. M. Kim, "Development of composite a ferrite EM wave absorbers for GHz frequency", Journal of Korea Electromagnetic Engineering Soc., vol. 14, no. 12, pp. 1329-1334, 2003
  8. C. M. Choi, D. I. Kim, D. H. Choi, Li, Rui, "Development of broad-band electromagnetic wave absorber for X-band sensors in double-layered type using carbon", 12th IAIN World Congress, vol. 1, pp. 297- 300, 2006
  9. Y. Naito, Electromagnetic Wave Absorbers, New Ohm, Tokyo, pp. 69-76, 1987
  10. 김동일, 전파 흡수체공학, 대영사, pp. 176-203, 2006년