DOI QR코드

DOI QR Code

4-Hydroxynonenal의 미토콘드리아 탈분극을 통한 혈관 내피 세포의 세포사 유도기전

4-Hydroxynonenal Induces Endothelial Apoptosis through Mitochondrial Depolarization

  • 강대연 (부산대학교 약학대학 약학과) ;
  • 이지영 (부산대학교 약학대학 약학과) ;
  • 김민선 (부산대학교 약학대학 약학과) ;
  • 김철홍 (부산대학교 약학대학 약학과) ;
  • 김형근 (부산대학교 약학대학 약학과) ;
  • 이선미 (부산대학교 약학대학 약학과) ;
  • 권영미 (부산대학교 약학대학 약학과) ;
  • 이재원 (부산대학교 약학대학 약학과) ;
  • 백형석 (부산대학교 유전공학연구소) ;
  • 유병팔 (텍사스주립대학 건강과학센터) ;
  • 정해영 (부산대학교 약학대학 약학과)
  • 발행 : 2008.11.30

초록

4-Hydroxynonenal (4-HNE)는 세포내 레독스의 균형을 깨뜨려 혈관 기능 손상을 일으킨다. 본 연구자들은 HNE의 축적이 야기하는 혈관 기능 손상기전을 더 잘 이해하기 위하여 혈관 내피 세포의 미토콘드리아 세포사 메커니즘을 규명하였다. HNE를 처리한 세포에서는 미토콘드리아 막전위 소실과 그에 따른 cytochrome C의 방출이 유도되었으며, Bax의 증가 및 Bcl-2의 감소가 관찰되었다. ROS 제거제인 NAC와 peroxynitrite 제거제인 페니실라민은 HNE가 유도하는 ROS 생성을 차단하여 cytochrome C 방출과 세포사를 억제하였다. 세포에 HNE와 zVAD-fmk (caspase 저해제)를 같이 처리하면 HNE가 유도하는 세포사를 억제하지 못하는데 이는 HNE에 의한 세포사가 caspase에 비의존적 단계일 가능성을 시사하였다. 위의 결과들은 HNE가 유도하는 혈관 내피 세포의 세포사 매커니즘은 미토콘드리아 막전위의 탈분극에 의해 촉발되며 이는 혈관계 항상성의 악화와 노화에 의해 수반되는 혈관기능 손상을 유도할 것으로 사료된다.

The 4-Hydroxynonenal (HNE) affects vascular dysfunctions probably through the interruption of the cellular redox balance. To better understand vascular abnormalities resulting from the accumulation of HNE, we delineated mechanism by which mitochondrial apoptosis occurs in the YPEN-1 endothelial cells. HNE treatment led to the loss of mitochondrial membrane potential (${\delta}{\Psi}_m$), resulting in the release of cytochrome c. Data showed decreased Bcl-2 and increased Bax protein levels in HNE-treated cells. NAC, a reactive oxygen species (ROS) scavenger, and penicillamine, the peroxynitrite scavenger, blocked HNE-mediated ROS generation, thereby thwarting the cytochrome c release and apoptosis. The treatment of the cells with zVAD-fmk, a broad range caspase inhibitor did not suppress HNE-induced apoptosis, suggesting that the apoptosis might be the possibility of caspase-independent process. Our findings delineate the underlying mechanism of the HNE induced endothelial apoptosis by triggering depolarization of mitochondria membrane potential that can lead to the deterioration of vasculature homeostasis and subsequent vascular dysfunction with aging.

키워드

참고문헌

  1. Ali, S. F., C. P. LeBel and S. C. Bondy. 1992. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13, 637-648.
  2. Anuradha, C. D., S. Kanno and S. Hirano. 2001. Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Free Radic. Biol. Med. 31, 367-373. https://doi.org/10.1016/S0891-5849(01)00591-3
  3. Arita, K., H. Kobuchi, T. Utsumi, Y. Takehara, J. Akiyama, A. A. Horton and K. Utsumi. 2001. Mechanism of apoptosis in HL-60 cells induced by n-3 and n-6 polyunsaturated fatty acids. Biochem. Pharmacol. 62, 821-828. https://doi.org/10.1016/S0006-2952(01)00723-7
  4. Bursztajn, S., J. J. Feng, S. A. Berman and A. Nanda. 2000. Poly (ADP-ribose) polymerase induction is an early signal of apoptosis in human neuroblastoma. Brain Res. Mol. Brain Res. 76, 363-376. https://doi.org/10.1016/S0169-328X(00)00026-7
  5. Cathcart, A. G., V. Borutaite and G. C. Brown. 1999. Superoxide dismutase and hydrogen peroxide cause rapid nitric oxide breakdown, peroxynitrite production and subsequent cell death. Biochim. Biophys. Acta. 1454, 275-288. https://doi.org/10.1016/S0925-4439(99)00046-0
  6. Cathcart, R., E. Schwiers and B. N. Ames. 1983. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein fluorescent assay. Anal. Biochem. 134, 111-116. https://doi.org/10.1016/0003-2697(83)90270-1
  7. Cheng, J. Z., S. S. Singhal, A. Sharma, M. Saini, Y. Yang, S. Awasthi, P. Zimniak and Y. C. Awasthi. 2001. Transfection of mGSTA4 in HL-60 cells protects against 4-hydroxynonenal-induced apoptosis by inhibiting JNK-mediated signaling. Arch. Biochem. Biophys. 392, 197-207. https://doi.org/10.1006/abbi.2001.2452
  8. Chiarpotto, E., F. Biasi, A. Scavazza, S. Camandola, M. U. Dianzani and G. Poli. 1995. Metabolism of 4-hydroxy-2-nonenal and aging. Bioche. Biophys. Res. Commun. 207, 477-484. https://doi.org/10.1006/bbrc.1995.1213
  9. Colquhoun, A. and R. I. Schumacher. 2001. N-Linolenic acid and eicosapentaenoic acid induce modifications in mitochondrial metabolism, reactive oxygen species generation, lipid peroxidation and apoptosis in Walker 256 rat carcinosarcoma cells. Biochim. Biophys. Acta. 1533, 207-219. https://doi.org/10.1016/S1388-1981(01)00136-6
  10. Compton, C. N., A. P. Franko, M. T. Murray, L. N. Diebel and S. A. Dulchavsky. 1998. Signaling of apoptotic lung injury by lipid hydroperoxides. J. Trauma. 44, 783-788. https://doi.org/10.1097/00005373-199805000-00007
  11. Donovan, M. and T. Cotter. 2004. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophy. Acta. 1644, 133-147. https://doi.org/10.1016/j.bbamcr.2003.08.011
  12. Esterbauer, H., R. J. Schaur and H. Zollner. 1991. Chemistry and biochemistry of 4-hydroxynenenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81-128. https://doi.org/10.1016/0891-5849(91)90192-6
  13. Habib, A., C. Creminon, Y. Frobert, J. Grassi, P. Pradelles and J. Maclouf. Demonstration of an inducible cyclooxygenase in human endothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. J. Biol. Chem. 268, 23448-23454.
  14. Hamilton Jr., R. F., L. Li, W.L. Eschenbacher, L. Szweda and A. Holian. 1998. Potential involvement of 4-hydroxynonenal in the response of human lung cells to ozone. Am. J. Physiol. 274, 8-16.
  15. Haynes, R. L., B. Brune and A. J. Townsend. 2001. Apoptosis in RAW 264.7 cells exposed to 4-hydroxy-2-nonenal: dependence on cytochrome C release but not p53 accumulation. Free Radic. Biol. Med. 30, 884-894. https://doi.org/10.1016/S0891-5849(01)00476-2
  16. Joza, N., S. A, Susin, E. Daugas, W. L. Stanford, S. K. Cho, C. Y. Li, T. Sasaki, A. J. Elia, H. Y. Cheng, L. Ravagnan, K. F. Ferri, N. Zamzami, A. Wakeham, R. Hakem, H. Yoshida, Y. Y. Kong, T. W. Mak, J. C. Zuniga-Pflucker, G. Kroemer and J. M. Penninger. 2001. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549-554. https://doi.org/10.1038/35069004
  17. Kang, Y. H., M. J. Yi, M. J. Kim, M. T. Park, S. Bae, C. M. Kang, C. K. Cho, I. C. Park, M. J. Park, C. H. Rhee, S. I. Hong, H. Y. Chung, Y. S. Lee and S. J. Lee. 2004. Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly (ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res. 64, 8960-8967. https://doi.org/10.1158/0008-5472.CAN-04-1830
  18. Kruman, I. I. and M. P. Mattson. 1999. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 72, 529-540. https://doi.org/10.1046/j.1471-4159.1999.0720529.x
  19. Kruman, P., M, Castedo, S. A, Susin, N, Zamzami, T. Hirsch, A. Macho, A. Haeffner, F. Hirsch, M. Geuskens and G. Kroemer. 1996. Mitochondrial permeability transition is a central coordinating event of apoptosis. J. Exp. Med. 184, 1155-1160 https://doi.org/10.1084/jem.184.3.1155
  20. Lee, J. Y., J. H. Je, D. H. Kim, S. W. Chung, Y. Zou, N. D. Kim, M. A. Yoo, H. S. Baik, B. P. Yu and H. Y. Chung. 2004. Induction of endothelial apoptosis by 4-hydroxyhexenal. Eur. J. Biochem. 271, 1339-1347. https://doi.org/10.1111/j.1432-1033.2004.04042.x
  21. Meng, J., N. Sakata, S. Takebayashi, T. Asano, T. Futata, R. Nagai, K. Ikeda, S. Horiuchi, T. Myint and N. Taniguchi. 1998. Glycoxidation in aortic collagen from STZ-induced diabetic rats and its relevance to vascular damage. Atherosclerosis 136, 355-365. https://doi.org/10.1016/S0021-9150(97)00238-4
  22. Mikhailov, V., M. Mikhailova, D. J. Pulkrabek, Z. Dong, M. A. Venkatachalam and P. Saikumar. 2001. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J. Biol. Chem. 276, 18361-18374. https://doi.org/10.1074/jbc.M100655200
  23. Muradian, K. and D. O. Schachtschabel. 2001. The role of apoptosis in aging and age-related disease: update, Z. Gerontol. Geriatr. 34, 441-446. https://doi.org/10.1007/s003910170015
  24. Naumann, U., J. Wischhusen, S. Weit, J. Rieger, H. Wolburg, U. Massing and M. Weller. 2004. Alkylphosphocholine-induced glioma cell death is BCL-X(L)-sensitive, caspase-independent and characterized by massive cytoplasmic vacuole formation. Cell Death Differ. 11, 1326-1341. https://doi.org/10.1038/sj.cdd.4401503
  25. Oltvai, Z. N., C. L. Milliman and S. J. Korsmeyer. Bcl-2 heterodimerizes in vivo with a conserved homologue, Bax that accelerates programmed cell death. 2003. Cell 74, 609-619.
  26. Pollack, B. S., B. K. Park and B. P. Yu. 1996. 4-Hydroxyhexenal is a potent induces of the mitochondrial permeability transition. J. Biol. Chem. 271, 6033-6038. https://doi.org/10.1074/jbc.271.11.6033
  27. Pollack, J. J., H. Bertrand and B. P. Yu. 1995. Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic. Biol. Med. 19, 583-590 https://doi.org/10.1016/0891-5849(95)00066-7
  28. Pollack, M. and C. Leeuwenburgh. 2001. Apoptosis and aging: role of the mitochondria. J. Gerontol. Biol. Sci. Med. Sci. 56, 475-482. https://doi.org/10.1093/gerona/56.11.B475
  29. Pollack, R., F. Marcheselli, F. Moroni and C. Pieri. 2002. Apoptosis in human aortic endothelial cells induced by hyperglycemic condition involves mitochondrial depolarization and is prevented by N-acetyl-L-cysteine. Metabolism 51, 1384-1388. https://doi.org/10.1053/meta.2002.35579
  30. Pryor, W. A., R. Cueto, X. Jin, W. H. Koppenol, M. Ngu-Schwemlein, G. L. Squadrito, P. L. Uppu and R. M. Uppu. 1995. A practical method for preparing peroxynitrite solutions of low ionic strength and free of hydrogen peroxide. Free Radic. Biol. Med. 18, 75-83. https://doi.org/10.1016/0891-5849(94)00105-S
  31. Ruef, J., M. Moser, C. Bode, W. Kubler and M. S. Runge. 2001. 4-Hydroxynonenal induces apoptosis, NF-$_KB$-activation and formation of 8-isoprostane in vascular smooth muscle cells. Basic Res. Cardiol. 96, 143-150. https://doi.org/10.1007/s003950170064
  32. Schonfeld, P. and R. Bohnensack. 1997. Fatty acid-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier. FEBS Lett. 420, 167-170. https://doi.org/10.1016/S0014-5793(97)01511-1
  33. Toyokuni, S., K. Uchida, K. Okamoto, Y. Hattori-Nakakuki, H. Hiai and E. R. Stadtman. 1994. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc. Natl. Acad. Sci. 91, 2616-2620. https://doi.org/10.1073/pnas.91.7.2616
  34. Uchida, K. 2000. Role of reactive aldehyde in cardiovascular diseases. Free Radic. Biol. Med. 28, 1685-1696. https://doi.org/10.1016/S0891-5849(00)00226-4
  35. Uchida, K. 2003. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 42, 318-343. https://doi.org/10.1016/S0163-7827(03)00014-6
  36. Usatyuk, P. V. and V. Natarajan. 2004. Role of mitogen-activated protein kinases in 4-hydroxy-2-nonenal-induced actin remodeling and barrier function in endothelial cells. J. Biol. Chem. 279, 11789-11797. https://doi.org/10.1074/jbc.M311184200
  37. Wang, D. S., N. Iwata, E. Hama, T. C. Saido and D. W. Dickson. 2003. Oxidized neprilysin in aging and Alzheimer's disease brains. Biochem. Biophys. Res. Commun. 310, 236-241. https://doi.org/10.1016/j.bbrc.2003.09.003
  38. West, J. D., C. Ji and L. J. Marnett. 2005. Modulation of DNA fragmentation factor 40 nuclease activity by poly (ADP-ribose) polymerase-1. J. Biol. Chem. 280, 15141-15147. https://doi.org/10.1074/jbc.M413147200
  39. Yang, J., X. Liu, K. Bhalla, C. N. Kim, A. M. Ibrado, J. Cai, T. I. Peng, D. P. Jones and X. Wang. 1997. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132. https://doi.org/10.1126/science.275.5303.1129
  40. Yu, B. P. and H. Y. Chung. 2001. Oxidative stress and vascular aging, Diabetes Res. Clin. Pract. 2, 73-80. https://doi.org/10.1016/S0168-8227(01)00338-2
  41. Zamzami, N., P. M. Marchetti, C. Castedo, J. L. Zanin, P. Vayssiere, X. Petit and G. Kroemer. 1995. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181, 1661-16672. https://doi.org/10.1084/jem.181.5.1661

피인용 문헌

  1. Extract from Artemisia annua Linn? Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1708
  2. Effects of Liriopis Tuber on 4-HNE-induced Apoptosis in PC-12 Cells vol.28, pp.2, 2013, https://doi.org/10.6116/kjh.2013.28.2.33
  3. The Extract from Artemisia annua Linné. Induces p53-independent Apoptosis through Mitochondrial Signaling Pathway in A549 Lung Cancer Cells vol.26, pp.8, 2016, https://doi.org/10.5352/JLS.2016.26.8.887