DOI QR코드

DOI QR Code

내독소내성 마우스에서 Nitric Oxide 생성에 미치는 림프구 부전

Impaired Functions of Lymphocytes on Nitric Oxide Production in Endotoxin- Tolerant Mice

  • 길영기 (고신대학교 의과대학 해부학교실) ;
  • 강미경 (고신대학교 의과대학 의과학연구소)
  • Gil, Young-Gi (Department of Anatomy, Kosin University College of Medicine) ;
  • Kang, Mi-Kyung (Institute for Medical Science, Kosin University College of Medicine)
  • 발행 : 2008.11.30

초록

본 연구에서는 내독소내성 상태에 있는 마우스 세포의 싸이토카인 생성능을 측정하기 위하여 대식세포-림프구 공동배양계를 이용한 nitric oxide (NO) 생성을 조사하였다. 마우스 복강 대식세포에 lipopolysaccharide (LPS)와 interferon-g (IFN-g)를 처리시 NO 생성이 증가되었으며, tumor necrosis factor-a (TNF-a) 또한 LPS처럼 NO 합성을 자극하는 것을 관찰할 수 있었다. 한편, 대식세포를 비장세포와 공동배양시, LPS 단독처리만으로도 NO 합성이 증가되었다. 반면, 2.5 mg/kg LPS로 전처리하고 치사량의 LPS를 2차 투여한 마우스의 경우, 마우스의 치사 및 혈중 TNF-a와 IFN-g가 증가되지 않았다. 또한 LPS-내성 마우스로부터 분리한 대식세포를 정상 비장세포와 공동배양시 LPS에 의한 NO생성이 일어나지 않았으며, 외래 TNF-a에 의한 NO 생성도 일어나지 않았다. 이와 아울러 정상 대식세포와 LPS 내성 마우스로부터 분리한 비장세포를 공동배양하였을 때, LPS 자극으로 인한 NO 생성이 일어나지 않았으며, 이러한 억제현상은 외래 IFN-g 또는 IFN-g 생성을 촉진시키는 concanavalin A (ConA)에 의해서 다시 역전되었다. 이러한 결과는 대식세포 뿐만 아니라 림프구도 LPS 내성에 관여하는 것을 보여준다고 사료된다. INF-g는 TNF-a 발현을 증가시키기 때문에, 림프구의 INF-g 합성 감소는 LPS에 내성을 보이는 대식세포의 TNF-a 합성 저하와 상호작용으로 내독소내성 상태를 유도하며 과도한 염증반응을 억제하는 것으로 사료된다. 따라서 LPS 내독소내성은 중환자의 심각한 패혈증에 대한 예방법으로 활용될 수 있을 것으로 기대된다.

In this study, nitric oxide (NO) production in a macrophage-lymphocyte co-culture system was used to assess the cytokine producing capability of cells during endotoxin tolerance in mice. Incubation of peritoneal macrophages with interferon-$\tau$ (IFN-$\tau$) in the presence of lipopolysaccharide (LPS) augmented NO synthesis. Exogenous tumor necrosis factor-$\alpha$(TNF-$\alpha$) could also replace LPS for the stimulation of NO production. Macrophages co-cultured with splenic lymphocytes showed augmented NO synthesis by LPS alone. However, pretreatment of mice with 2.5 mg/kg LPS completely prevented the lethality and the increase of blood TNF-$\alpha$ and IFN-$\tau$ after the second challenge with a lethal dose of LPS. In addition, when macrophages prepared from LPS-tolerant mice were co-cultured with normal splenocytes, LPS also could not induce the production of NO, even in the presence of exogenous TNF-$\alpha$. Moreover, when normal macrophages were co-cultured with splenocytes obtained from LPS-tolerant mice, stimulation with LPS could not evoke the NO production enhancement. However, this down-regulation was able to reverse by exogenous IFN-$\tau$ or concanavalin A (ConA), a stimulator of IFN-$\tau$ production. Our results indicate that not only macrophages but also lymphocytes contribute to LPS tolerance. As INF-$\tau$ can enhance the expression of TNF-$\alpha$, the decrease of INF-$\tau$synthesis from lymphocytes may orchestrate with the decrease of TNF-$\alpha$ synthesis from LPS-tolerant macrophages for the production of tolerant state and the prevention of excessive inflammation. Therefore, LPS tolerance may be exploited for prophylaxis of severe sepsis in patients at risk.

키워드

참고문헌

  1. Abbas, A. K., A. H. Lichtman and J. S. Pober. 1997. Cellular and Molecular Immunology. W.B. Saunders Co., Philadelphia.
  2. Bone, R. C., R. A. Balk, F. B. Cerra, R. P. Dellinger, A. M. Fein, W. A. Knaus, R. M. Schein and W. J. Sibbald. 1992. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101, 1644-1655. https://doi.org/10.1378/chest.101.6.1644
  3. Bundschuh, D. S., J. Barsig, T. Hartung, F. Randow, W. D. Docke, H. D. Volk and A. Wendel. 1997. Granulocyte-macrophage colony-stimulating factor and IFN-gamma restore the systemic TNF-alpha response to endotoxin in lipopolysaccharide-desensitized mice. J. Immunol. 158, 2862-2871.
  4. Ertel, W., J. P. Kremer, K. Kenney, U. Steckholzer, D. Jarrar, O. Trentz and F. W. Schildberg. 1995. Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood 85, 1341-1347.
  5. Farrar, M. A. and R. D. Schreiber. 1993. The molecular cell biology of interferon-gamma and its receptor. Annu. Rev. Immunol. 11, 571-611. https://doi.org/10.1146/annurev.iy.11.040193.003035
  6. Freudenberg, M. A. and C. Galanos. 1988. Induction of tolerance to lipopolysaccharide (LPS)-D-galactosamine lethality by pretreatment with LPS is mediated by macrophages. Infect. Immun. 56, 1352-1357.
  7. Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126, 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  8. Heagy, W., C. Hansen, K. Nieman, L. Jorge and J. Rodriguez. 2000. Impaired mitogen-activated protein kinase activation and altered cytokine secretion in endotoxin-tolerant human monocytes. J. Trauma. 49, 1-8. https://doi.org/10.1097/00005373-200007000-00001
  9. Henricson, B. E., C. L. Manthey, P. Y. Perera, T. A. Hamilton and S. N. Vogel. 1993. Dissociation of lipopolysaccharide (LPS)-inducible gene expression in murine macrophages pretreated with smooth LPS versus monophosphoryl lipid A. Infect. Immun. 61, 2325-2333.
  10. Hewett, J. A. and R. A. Roth. 1993. Hepatic and extrahepatic pathobiology of bacterial lipopolysaccharides. Pharmacol. Rev. 45, 382-411.
  11. Kang, M. K., Y. E.Yoon, J. Y. Yang, K. B. Kwon, J. W. Park and E. C. Jhee. 2004. Protective effect of retinoic acid on interleukin-1$\beta$-induced cytotoxicity of pancreatic $\beta$-cells. Mecha. Age. Develop. 125, 483-490. https://doi.org/10.1016/j.mad.2004.04.006
  12. Kim, Y. M. and K. Son. 1996. A nitric oxide production bioassay for interferon-gamma. J. Immunol. Methods 198, 203-209. https://doi.org/10.1016/S0022-1759(96)00162-7
  13. Koerner, T. J., D. O. Adams and T. A. Hamilton. 1987. Regulation of tumor necrosis factor (TNF) expression: interferon-gamma enhances the accumulation of mRNA for TNF induced by lipopolysaccharide in murine peritoneal macrophages. Cell Immunol. 109, 437-443. https://doi.org/10.1016/0008-8749(87)90326-1
  14. Le, J., J. X. Lin, D. Henriksen-DeStefano and J. Vilcek. 1986. Bacterial lipopolysaccharide-induced interferon-gamma production: roles of interleukin-1 and interleukin-2. J.Immunol. 136, 4525-4530.
  15. Li, S. P., S. I. Lee and J. E. Domer. 1998. Alterations in frequency of interleukin-2 (IL-2)-, gamma interferon-, or IL-4-secreting splenocytes induced by Candida albicans mannan and/or monophosphoryl lipid A. Infect. Immun. 66, 1392-1399.
  16. Marumo, T., T. Nakaki, H. Adachi, H. Esumi, H. Suzuki, T. Saruta and R. Kato. 1993. Nitric oxide synthase mRNA in endothelial cells: synergistic induction by interferongamma, tumor necrosis factor-alpha and lipopolysaccharide and inhibition by dexamethasone. Jpn. J. Pharmacol. 63, 327-334. https://doi.org/10.1254/jjp.63.327
  17. Medvedev, V., P. Henneke, A. Schromm, E. Lien, R. Ingalls, M. Fenton, D. Golenbock and S. Vogel. 2000. Induction of tolerance to lipopolysaccharide and mycobacterial components in Chinese hamster ovary/CD14 cells is not affected by over expression of Toll-like receptors 2 or 4. J. Immunol. 167, 2257-2267.
  18. Mishell, B. B. and S. M. Shiigi. 1989. Preparation of mouse cell suspensions in selected methods in cellular immunology, pp. 3-27, In Mishell, B. B. and S. M. Shiigi (eds.), W.H. Freeman and company press, San Francisco.
  19. Moncada, S., R. M. Palmer and E. A. Higgs. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142.
  20. Munford, R. A. and J. Pugin. 2001. Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Infect. Immun. 69, 5249-5263. https://doi.org/10.1128/IAI.69.9.5249-5263.2001
  21. Parker, M. M. 1998. Pathophysiology of cardiovascular dysfunction in septic shock. New Horiz. 6, 130-138.
  22. Randow, F., W. D. Docke, D. S. Bundschuh, T. Hartung, A. Wendel and H. D. Volk. 1997. In vitro prevention and reversal of lipopolysaccharide desensitization by IFN-gamma, IL-12, and granulocyte-macrophage colony-stimulating factor. J. Immunol. 158, 2911-2918.
  23. Randow, F., U. Syrbe, C. Meisel, D. Krausch, H. Zuckermann, C. Platzer and H. D. Volk. 1995. Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J. Exp. Med. 181, 1887-1892. https://doi.org/10.1084/jem.181.5.1887
  24. Ross, M. E. and M. A. Caligiuri. 1997. Cytokine-induced apoptosis of human natural killer cells identifies a novel mechanism to regulate the innate immune response. Blood 89, 910-918.
  25. Sanchez-Cantu, L., H. N. Rode and N. V. Christou. 1989. Endotoxin tolerance is associated with reduced secretion of tumor necrosis factor. Arch. Surg. 124, 1432-1436 https://doi.org/10.1001/archsurg.1989.01410120082016
  26. Soszynski, D. 2002. Inhibition of nitric oxide synthase delays the development of tolerance to LPS in rats. Physiol. Behav. 76, 159-169. https://doi.org/10.1016/S0031-9384(02)00693-5
  27. Tracey, K. J. and A. Cerami. 1993. Tumor necrosis factor: an updated review of its biology. Crit. Care Med. 21, S415-422
  28. Tsujimoto, M., Y. K. Yip and J. Vilcek. 1986. Interferon-gamma enhances expression of cellular receptors for tumor necrosis factor. J. Immunol. 136, 2441-2444.
  29. Varma, T. K., T. E. Toliver-Kinsky, C. Y. Lin, A. P. Koutrouvelis, J. E. Nichols and E. R. Sherwood. 2001. Cellular mechanisms that cause suppressed gamma interferon secretion in endotoxin-tolerant mice. Infec. Immun. 69, 5249-5263. https://doi.org/10.1128/IAI.69.9.5249-5263.2001
  30. Vincent, J. L., H. Zhang, C. Szabo' and J. C. Preiser. 2000. Effects of nitric oxide in septic shock. Am. J. Respir. Crit. Care Med. 161, 1781-1785. https://doi.org/10.1164/ajrccm.161.6.9812004
  31. Wright, B. E. and M. West. 2002. Pathophysiology of sepsis, pp. 53-62, In Windsor, A. (ed.), Sepsis and Multiple Organ Dysfuction: a Multidisciplinary Approach, WB Saunders, New York.
  32. Yoza, B., K. LaRue and C. McCall. 1998. Molecular mechanisms responsible for endotoxin tolerance. Prog. Clin. Biol. Res. 397, 209-215.
  33. Zuckerman, S. H. and G. F. Evans. 1992. Endotoxin tolerance: in vivo regulation of tumor necrosis factor and interleukin-1 synthesis is at the transcriptional level. Cell Immunol. 140, 513-519. https://doi.org/10.1016/0008-8749(92)90216-C