DOI QR코드

DOI QR Code

Image Comparisons using a Diethylenetriaminetriacetic Acid Derivative and Gd-DTPA

Diethylenetriaminetriacetic acid 유도체와 Gd-DTPA와의 영상비교

  • Published : 2008.11.28

Abstract

In this study, image comparisons were carried out using a MRI contrast medium which was derived by mixing a polyaminocarboxylic ligand and a gadolinium (III) transition metal which is paramagnetic and has good neutron absorbing capabilities with Gd-DTPA which is currently being used widely in the clinical setting. By using a 1.0T (Harmony, SIEMENS) MR equipment, phantoms of which 100cc of saline was diluted with a diethylenetriaminetriacetic acid derivative and Gd-DTPA were imaged. The amount of diethylenetriaminetriacetic acid and Gd-DTPA which was diluted into the 100cc of saline was 0.05mmol/L, 0.1mmol/L, 0.15mmol/L, 0.2mmol/L, 0.3mmol/L, 0.5mmol/L, 1.0mmol/L, 2.0mmol/L, 3.0mmol/L and 4.9mmol/L respectively. Head coils were used and while fixing the SE pulse sequence and image variable (as TE is 14ms, 1NEX with a 256x201 matrix), the signal intensity and simple contrast ratios according to changing concentrations and TR were compared with various TR at 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1000ms, 1200ms, 1400ms and 1600ms. According to the comparison results of the signal intensity of the image based on changes in contrast medium concentrations and TR, the differences in signal intensity between the two contrast mediums were found to be small at $1.0{\sim}2.0mmol/L$ when the highest signal intensity was achieved. However, at concentrations of 1.0mmol/L or less, the signal intensity was markedly higher in the Diethylenetriaminetriacetic acid derivative than in the Gd-DTPA complex. It was also found that the differences in the signal intensities demonstrated by the concentrations of the contrast mediums were affected by the TR. Accordingly, the efficacy of the Diethylenetriaminetriacetic acid derivative was shown to be better than the Gd-DTPA and also possible to get the optimum image quality by the use of an appropriate TR with appropriate concentrations of contrast medium.

본 연구는 상자성이며 중성자를 흡수하는 힘이 큰 gadolinium(III) 전이금속과 polyaminocarboxylic ligand를 합성하여 제조한 MRI 조영제와 현재 임상에서 널리 사용되고 있는 Gd-DTPA의 영상을 비교하였다. 1.0T(Harmony, SIEMENS) MR 장비를 이용하여 Saline 100cc에 Diethylenetriaminetriacetic acid 유도체와 Gd-DTPA를 각각 0.05mmol/L, 0.1mmol/L, 0.15mmol/L, 0.2mmol/L, 0.3mmol/L, 0.5mmol/L, 1mmol/L, 2mmol/L, 3mmol/L, 4 mmol/L로 희석한 팬텀을 영상화하였다. Head Coil을 사용하였으며, SE Pulse sequence 와 영상변수는 TE를 14ms, 1NEX, matrix는 256×201로 고정하고, TR을 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1000ms, 1200ms, 1400ms, 1600ms로 변화하여 각 조영제의 농도와 TR의 변화에 따른 신호강도와 단순대조도비를 비교하였다. 측정된 자료는 통계패키지 프로그램인 SAS v8.1(GLM procedeur)을 사용하여 분석하였다. 조영제의 농도와 TR의 변화에 따른 영상의 신호강도를 비교한 결과 최대신호강도를 보인 $1{\sim}2mmol/L$에서 두 조영제간의 차이는 크지 않은 것으로 나타났다. 하지만 1mmol/L 이하의 낮은 농도에서는 Diethylenetriaminetriacetic acid 유도체의 신호강도가 현저히 높은 것을 알 수 있다. 단순대조도비를 비교한 결과에서도 신호강도와 같은 양상을 보였으며, 대체로 1mmol/L 이하의 낮은 농도에서는 Diethylenetriaminetriacetic acid 유도체가 Gd-DTPA에 비해 높은 대조도비를 보이고 그 이상의 농도에서는 Gd-DTPA의 대조도비가 높은 것으로 나타났다. 또한 TR에 따라 각각의 조영제 농도별 신호강도의 차이가 현저한 것으로 나타났다. 따라서 Gd-DTPA에 비해 Diethylenetriaminetriacetic acid 유도체의 효능이 뛰어나며, 조영제의 농도에 맞추어 적절한 TR을 사용하여 최적의 영상을 얻어야 할 것으로 사료된다.

Keywords

References

  1. F. M. Cavagna, F. Maggioni, P. M. Casteli, M. Dapra, and V. Lurusso, "Gadolinium Chelates with Weak Binding to Serum Proteins: A New Class of High-Efficiency, General Purpose Contrast Agents for Magnetic Resonance Imaging," Investigative Radiology, Vol.32, No.12, pp.780-796, 1997. https://doi.org/10.1097/00004424-199712000-00009
  2. P. Caravan, J. Ellison, T. J. McMurry, and R. B. Lauffer, "Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications," Chemical Review, Vol.99, No.9, pp.2293-2352, 1999. https://doi.org/10.1021/cr980440x
  3. L. Lattuada and G. Lux, "Synthesis of GD-DTPA-cholesterol: a new lipophilic gadolinium complex as a potential MRI contrast agent," Tetrahedron Letters Vol.44, pp.3893-3895, 2003. https://doi.org/10.1016/S0040-4039(03)00829-3
  4. D. E. Reichert, S. J. Lewis, and C. J. Anderson, "Metal Complexes as Diagnostic Tools," Coordination Chemistry Review, Vol.184, No.1, pp.3-66, 1999. https://doi.org/10.1016/S0010-8545(98)00207-0
  5. L. Thunus and R. Lejeune, "Overview of Transition Metal and Lathanide Complexes as Diagnostic Tools," Coordination Chemistry Review, Vol.184, No.1, pp.125-155, 1999. https://doi.org/10.1016/S0010-8545(98)00206-9
  6. R. G. Cooper, C. J. Etheridge, L. Stewart, J. Marshall, S. Rudginsky, S. H. Cheng, and A. D. Miller, "Polyamine Analogues of $3\beta$-[N-(N,N-Dimethylaminoethane)carbamoyl]cholesterol (DC-Chol) as Agents for Gene Delivery," Chemistry: A European Journal, Vol.4, No.1, pp.137-151, 1998. https://doi.org/10.1002/(SICI)1521-3765(199801)4:1<137::AID-CHEM137>3.0.CO;2-2
  7. H. Vu, T. H. Schmaltz, and K. Jayaraman, "Synthesis and Properties of Cholesteryl-Modified Triple-Helix Forming Oligonucleotides Containing a Triglycyl Linker," Bioconjugate Chemistry, Vol.5, pp.666-668, 1994. https://doi.org/10.1021/bc00030a024
  8. H. Ishiwata, A. Vertut-Doi, T. Hirose and K. Miyajima, "Physical-Chemistry Characteristics and Biodistribution of Poly(ethylene glycol)-Coated Liposomes Using Poly(oxyethylene) Cholesteryl Ether," Chemical & Pharmaceutical Bulletin, Vol.43, No.6, pp.1005-1011, 1995. https://doi.org/10.1248/cpb.43.1005
  9. N. Boden, R. J. Bushby, S. Clarkson, S. D. Evans, P. F. Knowles, and A. Marsh, "The design and synthesis of simple molecular tethers for binding biomembranes to a gold surface," Tetrahedron, Vol.53, No.31, pp.10939-10952, 1997. https://doi.org/10.1016/S0040-4020(97)00698-4
  10. K. Akiyoshi, T. Nishikawa, S, Shichibe, and J. Sunamoto, "Stabilization of Insulin upon Supramolecular Complexation with Hydrophobized Polysaccharide Nanoparticle," Chemistry Review, Vol.24, No.8, p.707, 1995.
  11. R. B. Lauffer and T. J. Brady, "Preparation and water relaxation properties of proteins labeled with paramagnetic metal chelates," Magnetic Resonance Imaging, Vol.3, No.1, pp.11-16, 1985. https://doi.org/10.1016/0730-725X(85)90004-9
  12. H. Paajanen, R. C. Brasch, U. Schmiedl, and M. Ogan, "Magnetic resonance imaging of local soft tissue inflammation using gadolinium-DTPA," Acta Radiologica, Vol.28, No.1, pp.79-83, 1987. https://doi.org/10.3109/02841858709177313
  13. R. X. Zhuo, Y. J. Fu, and J. Liao, "Synthesis, Relaxivity and Biodistribution of Novel Magnetic Resonance Imaging (MRI) Contrast Agents: Polylysine (Gd-DTPA/DOTA) with Pendent Galactose Moieties as Hepatocyte-targeting Groups," Chinese Chemical Letters, Vol.8, No.2, pp.157-160, 1997.
  14. D. L. Ladd, R, Hollister, X, Peng, D, Wei, G, Wu, D, Delecki, R, A. Snow, J, L. Toner, K, Kellar, J, Eck, V. C. Desai, G Raymond, L. B. Kinter, T. S. Desser, and D. L. Rubin, "Polymeric Gadolinium Chelate Magnetic Resonance Imaging Contrast Agent Design, Synthesis, and Properties," Bioconjugate Chemistry, Vol.10, No.3, 1999.
  15. W. Krause , N. Hackmann-Schlichter, F. K. Maier, and R. Müller, "Dendrimers in Diagnostic," Topic in Current Chemisty, Vol.210, pp.261-308, 2000. https://doi.org/10.1007/3-540-46577-4_6
  16. H. A Goldstein, F. K Kashanian, R. F Blumetti, W. L Holyoak, F. P Hugo, and D. M Blumenfield, "Safety assessment of gadopentetate dimeglumine in U.S. clinical trials," Radiology, Vol.174, No.1, 1990.
  17. G. Sze, M. Brant-Zawadzki, V. M Haughton, K. R. Maravilla, M. T McNamara, A. J Kumar, A. M Aisen, J. N Dreisbach, W. G Bradley Jr, and J. C Weinreb, "Multicenter study of gadodiamide injection as a contrast agent in MR imaging of the brain and spine," Radiology, Vol.181, No.3, pp.693-699, 1991. https://doi.org/10.1148/radiology.181.3.1947084
  18. V. M. Runge, W. G. Bradley, M. N. Brant-Zawadzki, M. J. Carvlin, D. N. DeSimone, B. L. Dean, W. P. Dillon, B. P. Drayer, A.E. Flanders, and S. E. Harms, "Clinical safety and efficacy of gadoteridol: a study in 411 patients with suspected intracranial and spinal disease," Radiology, Vol.181, No.3, pp.701-709, 1991. https://doi.org/10.1148/radiology.181.3.1947085
  19. T. J. Meade, A. K. Taylory, and S. R. Bullz, "New magnetic resonance contrast agents as biochemical reporters," Current Opinion in Neurobiology, Vol.13. No.5, pp.597-602, 2003. https://doi.org/10.1016/j.conb.2003.09.009
  20. GD(III)-Based Contrast Agents for MRI, Academic Press Pub, 2005.
  21. Y. Tatsuhirom, I. Kenjiro, O. Keiji, A. Kohtaro, U. Toyokazu, H. Fuminori M. Masaharu, S. Noboru, Y. Kengo, S. Hiroaki, U. Hideo, and K. Yoshiki, "In vivo MR detection of vascular endothelial injury using a new class of MRI contrast agent," Bioorganic &Medicinal Chemistry Letters, Vol.14, No.11, pp.2787-2790, 2004. https://doi.org/10.1016/j.bmcl.2004.03.066
  22. A. M. Prantner,  V. Sharma,  J. R. Garbow, and D. Piwnica-Worms, "Synthesis and Characterization of a Gd-DOTA-d-Permeation Peptide for Magnetic Resonance Relaxation Enhancement of Intracellular Targets," Molecular Imaging, Vol.2, No.4, pp.333-341, 2003. https://doi.org/10.1162/153535003322750673
  23. B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall1,T. L. Chenevert, R R. Kopelman1, M. Philbert, R. Weissleder, A. Rehemtulla1, and B. D. Ross, "A Novel Polyacrylamide Magnetic Nanoparticle Contrast Agent for Molecular Imaging using MRI," Molecular Imaging, Vol.2, No.4, pp.324-332, 2003. https://doi.org/10.1162/153535003322750664
  24. E. C. Unger, D. K. Shen, and T. A. Fritz "Status of liposomes as MR contrast agents," Journal of Magnetic Resonance Imaging, Vol.3, No.1, pp.195-198, 1993. https://doi.org/10.1002/jmri.1880030132
  25. H. Tournier, R. Hyacinthe, and M. Schneider, "Gadolinium-Containing Mixed Micelle Formulations A New Class of Blood Pool MRI/MRA Contrast Agents," Academic Radiology, Vol.9, No.1, pp.S20-S28, 2002. https://doi.org/10.1016/S1076-6332(03)80389-6
  26. A. Scozzafava, L. Menabuoni, F. Mincione, G. Mincione, and C. T. Supuran, "Carbonic anhydrase inhibitors: synthesis of sulfonamides incorporating dtpa tails and of their zinc complexes with powerful topical antiglaucoma properties," Bioorganic Medicinal Chemistry Letters, Vol.11, No.4, pp.575-582, 2001. https://doi.org/10.1016/S0960-894X(00)00722-8
  27. D. Shahbazi-Gahrouei, Williams, and B. J. Allen, "In vitro study of relationship between signal intensity and gadolinium-DTPA concentration at high magnetic field strength," Vol.45, pp.298-304, 2001. https://doi.org/10.1046/j.1440-1673.2001.00924.x
  28. R. Frayne, B. G. Goodyear, P. Dichoff, M. L. Lanuzon, and R. J. Sevick, "Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging," Invest. Radiolol. Vol.38, pp.385-402, 2003.