DOI QR코드

DOI QR Code

RSOA-Based Wavelength-Reuse Gigabit WDM-PON

  • Kim, Byoung-Whi (WDM-PON Technology Team, Electronics and Telecommunications Research Institute)
  • Received : 2008.11.13
  • Accepted : 2008.12.09
  • Published : 2008.12.31

Abstract

This article presents the RSOA-based re-modulation schemes for practical application to the WDM-PON link. Emphasis is put on the three methods for reducing the residual downstream signal in the upstream transmission; the simplest one is to use the RSOA gain-saturation property, the second uses selective filtering of the adiabatic-chirped DFB-LD output spectrum, and the last uses a dynamic RSOA gain control by varying its driving current according to the incident binary signal. The reflection sensitivity in the proposed re-modulation link is also qualitatively presented in the cases of using two different types of seed light: coherent light from DFB-LD array and spectrum-sliced incoherent ASE light. We show experimental results of an error-free bidirectional gigabit transmission over 20 km at -30 dB reflection with the spectrum-sliced ASE seed light.

Keywords

References

  1. B. W. Kim, H. H. Lee, and J. W. Yang, “Access network technologies for broadband subscriber services in Korea: President and future,” IEICE Trans. Comm., vol. E86-B, no. 8, pp. 2273–2286, 2003
  2. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” IEEE J. Lightwave. Tech., vol. 22, no. 11, pp. 2582–2590, 2004 https://doi.org/10.1109/JLT.2004.834504
  3. K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM Passive Optical Network using Spectrum-Sliced Light-Emitting Diodes,” in Proc. of OFC'2005, Los Angeles, CA, Paper MF98
  4. H. D. Kim, S. G. Kang, and C.-H. Lee, “A Low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. vol. 12, no. 8, pp. 1067-1069, 2000 https://doi.org/10.1109/68.868010
  5. S.-G. Mun, M.-H. Kim, S.-M. Lee, and C.-H. Lee, “A 240 km reach DWDM-PON of 8-Gb/s capacity using an optical amplifier,” J. Opt. Soc. Korea, vol. 11, no. 3, pp. 93-96, 2007 https://doi.org/10.3807/JOSK.2007.11.3.093
  6. G.-Y. Kim and J.-H. Kim, “Wavelength Division Multiplexing-Passive Optical Network Based FTTH Field Trial Test,” J. Opt. Soc. Korea, vol. 11, no. 3, pp. 101-107, 2007 https://doi.org/10.3807/JOSK.2007.11.3.101
  7. S. B. Park, D. K. Jung, D. J. Shin, et al, “Demonstration of WDM-PON with 50 GHz channel spacing employing spectrum-sliced reflective semiconductor optical amplifiers,” IEE Electron. Lett., vol. 42, no. 20, pp. 1172-1173, 2006 https://doi.org/10.1049/el:20061801
  8. S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Optical Fiber Technology, vol. 12, no. 2, pp. 162-169, 2006 https://doi.org/10.1016/j.yofte.2005.07.006
  9. M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett., vol. 8, no. 9, pp. 1175-1177, 1996 https://doi.org/10.1109/68.531827
  10. W. Hung, C. Chan, L. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett., vol. 15, no. 10, pp. 1476-1478, 2003 https://doi.org/10.1109/LPT.2003.818055
  11. H. Takesue, and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” IEEE J. Lightwave. Tech., vol. 21, no. 11, pp. 2546-2556, 2003 https://doi.org/10.1109/JLT.2003.819532
  12. J. J. Koponen and M. J. Soderlund, “A duplex WDM passive optical network with 1:16 power split using reflective SOA remodulator at ONU,” in Proc. of OFC'2004, Los Angeles, CA, Paper MF99, 2004 https://doi.org/10.1109/OFC.2004.1359264
  13. N. Buldawoo, S. Mottet, H. Dupont, D. Sigogne, and D. Meichenin, “Transmission experiment using a laser amplifier-reflector for DWDM access network,” in Proc. of ECOC'98, Madrid, Spain, pp. 196-199, 1998
  14. P. Healey, P. Townsend, C. Ford, L. Johnston. P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” IEE Electron. Lett., vol. 37, no. 19, pp. 1181-1182, 2001 https://doi.org/10.1049/el:20010786
  15. W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2460-2462, 2005 https://doi.org/10.1109/LPT.2005.858148
  16. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Quantum Elec., vol. 7, no. 2, pp. 328-333, 2001 https://doi.org/10.1109/2944.954146
  17. S. G. Mun, J. H. Moon, H. K. Lee, J. Y. Kim, and C.-H. Lee, “A WDM-PON with a 40 Gb/s (32 ${\times}$ 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Exp., vol. 16, no. 15, pp. 11361-11368, 2008 https://doi.org/10.1364/OE.16.011361
  18. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrumsliced WDM systems,” IEEE J. Lightwave. Tech., vol. 23, no. 8, pp. 2399-2409, 2005 https://doi.org/10.1109/JLT.2005.852023
  19. M. Munroe, J. Cooper, and M. G. Raymer, “Spectral broadening of stochastic light intensity-smoothed by a saturated semiconductor optical amplifier,” IEEE J. Quantum Elec., vol. 34, no. 3, pp. 548-551, 1998 https://doi.org/10.1109/3.661465
  20. G. V. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Elec., vol. 25, no. 11, pp. 2297-2306, 1989 https://doi.org/10.1109/3.42059
  21. W. R. Lee, S. H. Cho, M. Y. Park, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Frequency detuning effects in the loop-back WDM-PON employing gain-saturated RSOAs,” IEEE Photon. Technol. Lett., vol. 18, no. 13, pp. 1436-1438, 2006 https://doi.org/10.1109/LPT.2006.877220
  22. J. Downie, I. Tomkos, N. Antoniades, and A. Boskovic, “Effects of filter concatenation for directly modulated transmission lasers at 2.5 and 10 Gb/s,” IEEE J. Lightwave. Tech., vol. 20, no. 2, pp. 218-228, 2002 https://doi.org/10.1109/50.983235
  23. E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli and S. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifier ,” IEEE Trans. Microwave Theory and Techniques, vol. 50, no. 1, pp. 77-81, 2002 https://doi.org/10.1109/22.981250
  24. W. R. Lee, S. H. Cho, M. Y. Park, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Optical transceiver employing an RSOA with feed-forward current injection,” in Proc. of OFC2007, Anaheim, California, USA https://doi.org/10.1109/OFC.2007.4348797
  25. M. Fujiwara, J.-I. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” IEEE J. Lightwave. Tech., vol. 24, no. 2, pp. 740-746, 2006 https://doi.org/10.1109/JLT.2005.862429
  26. H. W. Hu and H. Anis, “Degradation of bi-directional single fiber transmission in WDM-PON due to beat noise,” IEEE J. Lightwave. Tech., vol. 26, no. 8, pp. 870-881, 2008 https://doi.org/10.1109/JLT.2008.919434

Cited by

  1. All Colorless FPLD-Based Bidirectional Full-Duplex DWDM-PON vol.33, pp.4, 2015, https://doi.org/10.1109/JLT.2014.2375352
  2. Performance Evaluation of Bidirectional Optical Amplifiers for Amplified Passive Optical Network Based on Broadband Light Source Seeded Optical Sources vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.004
  3. A Flexible and Reliable 40-Gb/s OFDM Downstream TWDM-PON Architecture vol.7, pp.6, 2015, https://doi.org/10.1109/JPHOT.2015.2504970
  4. A WDM-PON with DPSK modulated downstream and OOK modulated upstream signals based on symmetric 10 Gbit/s wavelength reused bidirectional reflective SOA vol.13, pp.1, 2017, https://doi.org/10.1007/s11801-017-6227-2
  5. An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.222
  6. Performance Analysis for Optimizing Threshold Level Control of a Receiver in Asynchronous 2.5 Gbps/1.2 Gbps Optical Subscriber Network with Inverse Return to Zero(RZ) Coded Downstream and NRZ Upstream Re-modulation vol.13, pp.3, 2009, https://doi.org/10.3807/JOSK.2009.13.3.361
  7. A Novel Wavelength Re-Use WDM Passive Optical Network Architecture with Broadcasting Service vol.14, pp.11, 2010, https://doi.org/10.1109/LCOMM.2010.093010.100649
  8. Investigation of broadcasting signal overlay using high-frequency filtering characteristics of RSOA in ASE seeded WDM access network vol.285, pp.3, 2012, https://doi.org/10.1016/j.optcom.2011.09.058
  9. Impact of seed source power on dispersion-limited maximum reach in WDM-PONs using broadband light source seeded optical sources vol.20, pp.4, 2012, https://doi.org/10.1364/OE.20.003473
  10. Data Erasing and Rewriting Capabilities of a Colorless FPLD Based Carrier-Reusing Transmitter vol.7, pp.3, 2015, https://doi.org/10.1109/JPHOT.2015.2412457
  11. The effects of current density ratio and reflectivity on the gain, saturation and noise characteristics of a two-section MQW RSOA vol.34, pp.5, 2013, https://doi.org/10.1088/1674-4926/34/5/054004
  12. Performance evaluation of reflective electro-absorption modulator based optical source using a broadband light seed source for colorless WDM-PON applications vol.21, pp.10, 2013, https://doi.org/10.1364/OE.21.012914
  13. Relative Intensity Noise Suppression of Spectrum-Sliced Channels Using Polarization-Independent Optical Modulators vol.18, pp.6, 2014, https://doi.org/10.3807/JOSK.2014.18.6.646
  14. Equivalent Optical Bandwidth of Reflective Electro-Absorption Modulator Based Optical Source with a Broadband Seed Light for a 2.5 Gb/s and Beyond Signal Transmission vol.19, pp.4, 2015, https://doi.org/10.3807/JOSK.2015.19.4.371
  15. Dependence of In-Band Incoherent Crosstalk-Induced Penalty on Seed Source in RSOA-Based WDM-PONs vol.24, pp.7, 2012, https://doi.org/10.1109/LPT.2012.2183864
  16. Impact of Transmission Impairments on Demultiplexed Channels in WDMPONs Employing AWG-Based Remote Nodes vol.2, pp.10, 2010, https://doi.org/10.1364/JOCN.2.000848
  17. Optical carrier sinusoidal modulation suppressed by ultra-long semiconductor optical amplifier gain saturation vol.53, pp.6, 2011, https://doi.org/10.1002/mop.26010
  18. 25-GHz Spaced Spectrum-Sliced WDM PON Using 50-GHz AWGs vol.27, pp.13, 2015, https://doi.org/10.1109/LPT.2015.2421737
  19. Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach vol.18, pp.5, 2014, https://doi.org/10.3807/JOSK.2014.18.5.436