DOI QR코드

DOI QR Code

소형 압전 에너지 하베스터 구현을 위한 세라믹 크기 변화

Investigation of piezoelectric ceramic size effect for miniaturing the piezoelectric energy harvester

  • 김형찬 (한국과학기술연구원, 박막재료연구센) ;
  • 정우석 (한국과학기술연구원, 박막재료연구센터) ;
  • 강종윤 (한국과학기술연구원, 박막재료연구센터) ;
  • 윤석진 (한국과학기술연구원, 박막재료연구센터) ;
  • 주병권 (고려대학교 전자전기공학과) ;
  • 정대용 (명지대학교 신소재공학과)
  • 발행 : 2008.07.31

초록

Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the small wireless sensor nodes. As piezoelectric uni-morph cantilever structure can transfer low vibration to large displacement, this structure was commonly deployed to harvest electric energy from vibrations. Through our previous results, when stress was applied on the cantilever, stress was concentrated on the certain point of the ceramic of the cantilever. In this study, for miniaturing the energy harvester, we investigated how the size of ceramics and the stress distribution in ceramic affects energy harvester characteristics. Even though the area of ceramic was 28.6 % decreased from $10{\times}35{\times}0.5mm^3$ to $10{\times}25{\times}0.5mm^3$, both samples showed almost same maximum power of 0.45 mW and the electro-mechanical coupling factor ($K_{31}$) of 14 % as well. This result indicated that should be preferentially considered to generate high power with small size energy harvester.

키워드

참고문헌

  1. S. Roundy, P. K Wright, and J. M. Rabaey, 'energy. scavening for wireless sensor networks with special focus on vibrations', Kluwer Academic Pub., Boston, 2004
  2. K. Ren, Y. Liu, X. Geng, H. F. Hofmann, and Q. Zhang, 'Single crystal PMN-PT/Epoxy 1-3 composite for energyharvesting application', IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 53, no. 3, pp. 631-638, 2006 https://doi.org/10.1109/TUFFC.2006.1610572
  3. H. W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham, and H. F. Hofmann, 'Energy harvesting using a piezoelectric 'Cymbal' transducer in dynamic environment', Jpn. J. Appl. Phys. vol. 43, no. 9, pp. 6178-6183, 2004 https://doi.org/10.1143/JJAP.43.6178
  4. K. Uchino and J. R. Giniewicz, Micromechatronics, Marcel Dekker, Inc., New York, 2003
  5. Y. S. Lee, 'Shaping of piezoelectric polyvinylidene fluoride polymer film for tip position sensing of a cantilever beam', J. Kor. Sensors Soc., vol. 14, no. 4, pp. 225-230, 2005 https://doi.org/10.5369/JSST.2005.14.4.225
  6. J. S. Kim, 'Dielectric and piezoelectric properties of 0.125PMN-0.435PT-0.44PZ ceramic for ultrasonic motor applications', J. Kor. Sensors Soc., vol. 6, no. 5, pp. 392-399, 1997
  7. H. C. Kim, D. Y. Jeong, S. J. Yoon, and H. J. Kim, 'Analysis of the failure position in the unimorph cantilever for energy harvesting', Kor. J. Mater. Res. vol. 17 no. 2, pp. 121-122, 2007 https://doi.org/10.3740/MRSK.2007.17.2.121
  8. S. Roundy and P K Wright, 'A piezoelectric vibration based generator for wireless electronics,' Smart Mater. Struct. vol. 13. no. 4, pp. 1131-1142, 2004 https://doi.org/10.1088/0964-1726/13/5/018
  9. S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, and V. Sundararajan, 'Improving power output for vibration-based energy scavengers', IEEE Pervasive Computing, vol. 4, issu.1, pp. 28-36, 2005
  10. H. C. Kim, H. C. Song, D. Y. Jeong, H. J. Kim, S. J. Yoon, and B. K. Ju, 'Frequency tuning of unimorph cantilever for piezoelectric energy harvesting,' Kor. J. Mater. Res., vol. 17, no. 12, pp. 660- 663, 2007 https://doi.org/10.3740/MRSK.2007.17.12.660
  11. T. L. Floyd, Principles of Electric circits, Prentice Hall, Upper Saddle River, N. J., 2000
  12. C. H. Park, 'Dynamics modelling of beam with shunted piezoelectric elements', J. Sound and vibration, vol. 268, no. 1, pp. 115-129, 2003 https://doi.org/10.1016/S0022-460X(02)01491-8

피인용 문헌

  1. A Simple Plane-Shaped Micro Stator Using Silicon Substrate Mold and Enamel Coil vol.22, pp.5, 2013, https://doi.org/10.5369/JSST.2013.22.5.333