DOI QR코드

DOI QR Code

Differential Structural Responses of Ginseng Root Tissues to Different Initial Inoculum Levels of Paenibacillus polymyxa GBR-1

  • Jeon, Yong-Ho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Young-Ho (Bioresources Research Center, KT&G Central Research Institute)
  • 발행 : 2008.09.30

초록

Root discs of 4-year-old ginseng, Panax ginseng C. A. Meyer, were inoculated with the higher($10^8$ colonyforming units(CFU)/ml) and lower($10^6\;or\;10^5$ CFU/ml) initial inoculum levels of a plant-growth promoting rhizobacterium(PGPR), Paenibacillus polymyxa GBR-1 to examine rot symptom development and bacterial population changes on the root discs. At the higher inoculum level, brown rot symptoms developed and expanded on the whole root discs in which the bacterial population increased continuously up to 4 days after inoculation. In light and electron microscopy, ginseng root cells on the inoculation sites were extensively decayed, which were characterized by dissolved cell walls and destructed cytoplasmic contents. However, no rot symptoms were developed and the bacterial population increased only during the initial two days of inoculation at the lower inoculum level($10^6$ CFU/ml) of P. polymyxa GBR-1. At the lower inoculum level($10^5$ CFU/ml), boundary layers with parallel periclinal cell divisions, structurally similar to wound periderm, were formed internal to the inoculation sites, beneath which the cells were intact containing numerous normal-looking starch granules and no disorganized cell organelles, suggesting that these structural features may be related to the suppression of symptom development, a histological defense mechanism.

키워드

참고문헌

  1. Agrios, G. N. 2005. Plant Pathology, Fifth Edition. Elsevier Academic Press, San Diego, CA. 922 pp
  2. Biggs, A. R. and Alm, G. R. 1992. Response of peach bark tissues to inoculation with epiphytic fungi alone and in combination with Leucostoma cincta. Can. J. Bot. 70:186-191 https://doi.org/10.1139/b92-025
  3. Biggs, A. R. and Britton, K. O. 1988. Presymptom histopathology of peach trees inoculated with Botryosphaeria obtusa and Botryosphaeria dothidea. Phytopathology 78:1109-1118 https://doi.org/10.1094/Phyto-78-1109
  4. Caruso, F. I., Zuck, M. G. and Bessette, A. E. 1984. Bacterial seedling blight of tomato caused by Bacillus polymyxa. Plant Dis. 68:617-620 https://doi.org/10.1094/PD-68-617
  5. Chung, H. S. 1975. Studies on Cylindrocarpon destructans (Zins.) Scholten causing root rot of ginseng. Rep. Tottori Mycol. Inst. (Japan) 12:127-138
  6. Dijksterhuis, J., Sanders, M., Gorris, L. G. and Smid, E. J. 1999. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J. Appl. Microbiol. 86:13-21 https://doi.org/10.1046/j.1365-2672.1999.t01-1-00600.x
  7. Esau, K. 1977. Anatomy of Seed Plants. John Wiley & Sons, New York, NY. 550 pp
  8. Helbig, J. 2001. Biological control of Botrytis cinerea Pers. Ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J. Phytopathol. 149:265-273 https://doi.org/10.1046/j.1439-0434.2001.00609.x
  9. Jeon, Y. H., Chang, S. P., Hwang, I. and Kim, Y. H. 2003. Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J. Microbiol. Biotechnol. 13:881-891
  10. Jeon, Y. H., Park, H., Lee, B.-D., Yu, Y. H., Chang, S. P., Kim, S. G., Hwang, I. and Kim, Y. H. 2008. First description of crown gall disease on ginseng. Plant Pathol. J. 24:207-210 https://doi.org/10.5423/PPJ.2008.24.2.207
  11. Jung, W.-J., Jung, S.-J., An, K.-N., Jin, Y.-L., Park, R.-D., Kim, K.-Y., Shon, B. K. and Kim, T.-H. 2002. Effect of chitinaseproducing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J. Microbiol. Biotechnol. 12:865-871
  12. Karnovsky, M. J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27:137A
  13. Khan, Z., Kim, S. G., Jeon, Y. H., Khan, H. U., Son, S. H. and Kim, Y. H. 2008. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Technol. 99:3016-3023 https://doi.org/10.1016/j.biortech.2007.06.031
  14. Kim, K.-H., Yoon, J.-B., Park, H.-G., Park, E. W. and Kim, Y. H. 2004. Structural modifications and programmed cell death of chili pepper fruit related to resistance responses to Colletotrichum gloeosporioides infection. Phytopathology 94:1295-1304 https://doi.org/10.1094/PHYTO.2004.94.12.1295
  15. Lee, S.-K. 2004. Fusarium species associated with ginseng (Panax ginseng) and their role in the root-rot of ginseng plant. Res. Plant Dis. 10:248-259 https://doi.org/10.5423/RPD.2004.10.4.248
  16. Li, B., Ravnskov, S., Xie, G. and Larsen J. 2007. Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhizaassociated bacteria from the genus Paenibacillus. BioControl 52:863-875 https://doi.org/10.1007/s10526-007-9076-2
  17. Mavingui, P. and Heulin, T. 1994. In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol. Biochem. 26:801-803 https://doi.org/10.1016/0038-0717(94)90277-1
  18. Morris, L. L. and Mann, L. K. 1955. Wound healing, keeping quality, and compositional changes during curing and storage of sweet potatoes. Hilgardia 24:143-183 https://doi.org/10.3733/hilg.v24n07p143
  19. Mullick, D. B. 1977. The non-specific nature of defense in bark and wood during wounding, insect and pathogen attack. Recent Adv. Phytochem. 11:395-441
  20. Park, K. J. 2001. Fitness analysis of the forecasting model for the root rot progress of ginseng based on bioassay and soil environmental factors. Res. Plant Dis. 7:20-24
  21. Rittinger, P. A., Biggs, A. R. and Peirson, D. R. 1987. Histochemistry of lignin and suberin deposition in boundary layers formed after wounding in various plant species and organs. Can. J. Bot. 65:1886-1982 https://doi.org/10.1139/b87-258
  22. Shishido, M., Massicotte, H. B. and Chanway, C. P. 1996. Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann. Bot. 77:433-441 https://doi.org/10.1006/anbo.1996.0053
  23. Son, S.-H., Khan, Z., Moon, H. S., Kim, S. G., Moon, Y., Choi, D.-R. and Kim, Y. H. 2007. Nematicidal activity of secondary metabolites of a plant growth promoting rhizobacterium, Paenibacillus polymyxa. Russ. J. Nematol. 15:95-100
  24. Spurr, A. R. 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastr. Res. 26:31-43 https://doi.org/10.1016/S0022-5320(69)90033-1
  25. Struckmeyer, B. E. and Riker, A. J. 1951. Wound periderm formation in white-pine trees resistant to blister rust. Phytopathology 41:276-281
  26. Yu, Y. H. 1987. Root rot disease of Panax ginseng and their control in Korea. Korean J. Plant Pathol. 3:318-319
  27. Yu, Y. H. and Ohh, S. H. 1993. Research on ginseng diseases in Korea. Korean J. Ginseng Sci. 17:61-68

피인용 문헌

  1. Effects of initial inoculation density ofPaenibacillus polymyxaon colony formation and starch-hydrolytic activity in relation to root rot in ginseng 2010, https://doi.org/10.1111/j.1365-2672.2010.04674.x
  2. Biocontrol Efficacies of Bacillus Species Against Cylindrocarpon destructans Causing Ginseng Root Rot vol.27, pp.4, 2011, https://doi.org/10.5423/PPJ.2011.27.4.333
  3. Biological characteristics of Paenibacillus polymyxa GBR-1 involved in root rot of stored Korean ginseng vol.40, pp.4, 2016, https://doi.org/10.1016/j.jgr.2015.09.003
  4. Defense-Related Responses in Fruit of the Nonhost Chili Pepper against Xanthomonas axonopodis pv. glycines Infection vol.32, pp.4, 2016, https://doi.org/10.5423/PPJ.OA.12.2015.0256
  5. Biological characteristics ofBacillus amyloliquefaciensAK-0 and suppression of ginseng root rot caused byCylindrocarpon destructans vol.122, pp.1, 2017, https://doi.org/10.1111/jam.13325
  6. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum vol.38, pp.2, 2014, https://doi.org/10.1016/j.jgr.2013.11.016