Amelioration Effects of Irrigation-Aspiration on Renal Ischemia-Reperfusion Injury in Canine Model

개에서 신장의 허혈-재관류 손상에 대한관류-흡인의 감소효과

  • Lee, Jae-Il (Laboratory of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University) ;
  • Son, Hwa-Young (Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University) ;
  • Jeong, Seong-Mok (Laboratory of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University) ;
  • Kim, Myung-Cheol (Laboratory of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University)
  • 이재일 (충남대학교 수의과대학 수의외과학교실) ;
  • 손화영 (충남대학교 수의과대학 수의병리학교실) ;
  • 정성목 (충남대학교 수의과대학 수의외과학교실) ;
  • 김명철 (충남대학교 수의과대학 수의외과학교실)
  • Published : 2008.08.31

Abstract

Renal ischemia-reperfusion injury is great clinical important because viability of the transplanted organ depends on the tolerance of the graft to ischemia-reperfusion injury, an inevitable processing during surgery. The purpose of this study was to investigate the effects of irrigation-aspiration in ischemia-reperfusion injury model induced by cross-clamping of renal vessels. Blood samples were collected from these dogs for measurement of kidney function and antioxidant enzyme activity, and RI at the intrarenal artery was measured at different time intervals. And the kidneys were taken for histopathologic evaluation at day 14. Kidney function (Cr and BUN) showed a significant increasing in untreated group compared to treated group. Resistive index of intrarenal artery was no significant difference among the groups. Activity of antioxidant enzymes in plasma was significant decrease in untreated group compare to control group while in treated group was no significant difference compared to control group. In histopathologic finding, treated group was showed less damage than that of untreated group. This result suggests that the processing of irrigation-aspiration is useful to reducing ischemia-reperfusion injury.

신장의 허혈-재관류 손상은 수술하는 동안 부득이하게 발생하는 허혈-재관류 손상에 대한 이식조직의 내성에 따라 이식된 장기의 생존력이 달려있기 때문에 임상적으로 아주 중요하다. 본 연구의 목적은 신장 혈관을 차단하여 유발한 허혈-재관류 모델에서 관류-흡인의 효과를 알아보고자 실시하였다. 신기능과 항산화 효소를 검사하기 위해 혈액 샘플을 채취하였고 신장내 동맥의 혈류저항을 측정하였다. 14일째 신장을 절제하여 조직검사를 실시하였다. 신기능(Cr, BUN)은 처치군에 비해 비처치군에서 유의성 있는 상승을 보였다. 신장내 혈류 저항은 두 그룹 사이에 유의성이 없었다. 항산화 효소 활성은 대조군에 비해 비처치군에서 유의성 있는 감소를 보였으나, 처치군에서는 대조군과 유의성이 없었다. 조직검사 결과에서도 처치군이 비처치군에 비해 적은 조직손상을 보였다. 이러한 결과는 관류-흡인 과정이 신장의 허혈-재관류 손상을 감소시키는데 유용한 단계임을 시사한다.

Keywords

References

  1. Allen KS, Jorkasky DK, Arger PH, Velchik MG, Grumbach K, Coleman BG, Mintz MC, Betsch SE, Perloff LJ. Renal allografts: prospective analysis of Doppler sonography. Radiology 1988; 169: 371-376 https://doi.org/10.1148/radiology.169.2.3051114
  2. Aragno M, Cutrin JC, Mastrocola R, Perrelli MG, Restivo F, Poli G, Danni O, Boccuzzi G. Oxidative stress and kidney dysfunction due to ischemia/reperfusion in rat: attenuation by dehydroepiandrosterone. Kidney Int 2003; 64: 836-843 https://doi.org/10.1046/j.1523-1755.2003.00152.x
  3. Baines CP, Goto M, DowneyJM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 1997; 29: 207-216 https://doi.org/10.1006/jmcc.1996.0265
  4. Basile DP, Liapis H, Hammerman MR. Expression of bcl-2 and bax in regenerating rat renal tubules following ischemic injury. Am J Physiol 1997; 272: 640-647
  5. Baud L, Ardaillou R. Involvement of reactive oxygen species in kidney damage. Br Med Bull 1993; 49: 621-629 https://doi.org/10.1093/oxfordjournals.bmb.a072635
  6. Brezis M, Rosen S, Silva P, Epstein FH. Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J Clin Invest 1984; 73: 182-190 https://doi.org/10.1172/JCI111189
  7. Bryan CF, Luger AM, Martinez J, Muruve N, Nelson PW, Pierce GE, Ross G, Shield CF 3rd, Warady BA, Aeder MI, Helling TS. Cold ischemia time: an independent predictor of increased HLA class I antibody production after rejection of a primary cadaveric renal allograft. Transplantation 2001; 71: 875-879 https://doi.org/10.1097/00007890-200104150-00009
  8. Bulkley GB. Free radical-mediated reperfusion injury: a selective review. Br J Cancer Suppl 1987; 8:66-73
  9. Chiang YJ, Chu SH, Chuang CK, Chen HW, Chou CC, Chen Y, Wu CT. Resistive index cannot predict transplant kidney function. Transplant Proc 2003; 35: 94-95 https://doi.org/10.1016/S0041-1345(02)03802-2
  10. Cochrane J, Williams BT, Banerjee A, Harken AH, Burke TJ, CairnsCB, Shapiro JI. Ischemic preconditioning attenuates functional, metabolic, and morphologic injury from ischemic acute renal failure in the rat. Ren Fail 1999; 21: 135-145 https://doi.org/10.3109/08860229909066978
  11. Daemen MA, van de Ven MW, Heineman E, Buurman WA. Involvement of endogenous interleukin-10 and tumor necrosis factor-alpha in renal ischemia-reperfusion injury. Transplantation 1999; 67: 792-800 https://doi.org/10.1097/00007890-199903270-00003
  12. Das DK, Maulik N, Sato M, Ray PS. Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem 1999; 196: 59-67 https://doi.org/10.1023/A:1006966128795
  13. Dobyan DC, Nagle RB, Bulger RE. Acute tubular necrosis in the rat kidney following sustained hypotension: Physiologic and morphologic observations. Lab Invest 1977; 37: 411-422
  14. Finn WF. Enhanced recovery from postischemic acute renal failure. Micropuncture studies in the rat. Circ Res 1980; 46: 440-448 https://doi.org/10.1161/01.RES.46.3.440
  15. Glaumann B, Glaumann H, Trump BF. Studies of cellular recovery from injury. III. Ultrastructural studies on the recovery of the pars recta of the proximal tubule (P3 segment) of the rat kidney from temporary ischemia. Virchows Arch B Cell Pathol 1977; 25: 281-308
  16. Goes N, Urmson J, Ramassar V, Halloran PF. Ischemic acute tubular necrosis induces an extensive local cytokine response. Evidence for induction of interferon-gamma, transforming growth factor-beta 1, granulocyte-macrophage colony-stimulating factor, interleukin-2, and interleukin-10. Transplantation 1995; 59: 565-572 https://doi.org/10.1097/00007890-199502270-00022
  17. Gurel A, Armutcu F, Sahin S, Sogut S, Ozyurt H, Gulec M, Kutlu N O, Akyol O. Protective role of alphatocopherol and caffeic acid phenethyl ester on ischemiareperfusion injury via nitric oxide and myeloperoxidase in rat kidneys. Clin Chim Acta 2004; 339: 33-41 https://doi.org/10.1016/j.cccn.2003.09.013
  18. Heine GH, Girndt M, Sester U, Kohler H. No rise in renal Doppler resistance indices at peak serum levels of cyclosporin A in stable kidney transplant patients. Nephrol Dial Transplant 2003; 18: 1639-1643 https://doi.org/10.1093/ndt/gfg197
  19. Hoshinaga K, Shiroki R, Fujita T, Kanno T, Naide Y. The fate of 359 renal allografts harvested from non-heart beating cadaver donors at a single center. Clin Transpl 1998; 12: 213-220
  20. Hotter G, Closa D, Prados M, Fernandez-Cruz L, Prats N, Gelpi E, Rosello-Catafau J. Intestinal preconditioning is mediated by a transient increase in nitric oxide. Biochem Biophys Res Commun 1996; 222: 27-32 https://doi.org/10.1006/bbrc.1996.0692
  21. Ibrahim S, Jacobs F, Zukin Y, Enriquez D, Holt D, Baldwin W 3rd, Sanfilippo F, Ratner LE. Immunohistochemical manifestations of unilateral kidney ischemia. Clin Transplant 1996; 10: 646-652
  22. Jefayri MK, Grace PA, Mathie RT. Attenuation of reperfusion injury by renal ischaemic preconditioning: the role of nitric oxide. BJU Int 2000; 85: 1007-1013 https://doi.org/10.1046/j.1464-410x.2000.00678.x
  23. Jerome SN, Akimitsu T, Gute DC, Korthuis RJ. Ischemic preconditioning attenuates capillary no-reflow induced by prolonged ischemia and reperfusion.Am J Physiol 1995; 268: 2063-2067
  24. Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, Bonventre JV. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 1996; 97: 1056-1063 https://doi.org/10.1172/JCI118498
  25. Kitada H, Sugitani A, Yamamoto H, Otomo N, Okabe Y, Inoue S, Nishiyama K, Morisaki T, Tanaka M. Attenuation of renal ischemia-reperfusion injury by FR167653 in dogs. Surgery 2002; 131: 654-662 https://doi.org/10.1067/msy.2002.124629
  26. Lee CM, Carter JT, Randall HB, Hiose R, Stock PG, Melzer JS, Dafoe DC, Freise CE, Alfrey EJ. The effect of age and prolonged cold ischemia times on the national allocation of cadaveric renal allografts. J Surg Res 2000; 91: 83-88 https://doi.org/10.1006/jsre.2000.5921
  27. Meyer M, Paushter D, Steinmuller DR. The use of duplex Doppler ultrasonography to evaluate renal allograft dysfunction. Transplantation 1990; 50: 974-978 https://doi.org/10.1097/00007890-199012000-00015
  28. Nakano A, Liu GS, Heusch G, DowneyJM, Cohen MV. Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol 2000; 32: 1159-1167 https://doi.org/10.1006/jmcc.2000.1152
  29. Reimer KA, Ganote CE, JenningsRB. Alterations in renal cortex following ischemic injury. Ultrastructure of proximal tubules after ischemia or autolysis. Lab Invest 1972; 26: 347-363
  30. Sakura H, Ammala C, Smith PA, Gribble FM, Ashcroft FM. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett 1995; 377: 338-344 https://doi.org/10.1016/0014-5793(95)01369-5
  31. Sekhon CS, Sekhon BK, Singh I, Orak JK, Singh AK. Attenuation of renal ischemia/reperfusion injury by a triple drug combination therapy. Journal of Nephrology 2003; 16: 63-74
  32. Shackleton CR, Ettinger SL, McLoughlin MG, Scudamore CH, Miller RR, Keown PA. Effect of recovery from ischemic injury on class I and class II MHC antigen expression.Transplantation 1990; 49: 641-644 https://doi.org/10.1097/00007890-199003000-00032
  33. Shanley PF, Rosen MD, Brezis M, Silva P, Epstein FH, Rosen S. Topography of focal proximal tubular necrosis after ischemia with reflow in the rat kidney. Am J Pathol 1986; 22: 462-468
  34. Shoskes DA, Parfrey NA, Halloran PF. Increased major histocompatibility complex antigen expression in unilateral ischemic acute tubular necrosis in the mouse. Transplantation 1990; 49: 201-207 https://doi.org/10.1097/00007890-199001000-00045
  35. Tanaka M, Fujiwara H, Yamasaki K, Yokota R, Doyama K, Inada T, Ohtani S, Fujiwara T, Sasayama S. Expression of heat shock protein after ischemic preconditioning in rabbit hearts. Jpn Circ J 1998; 62: 512-516 https://doi.org/10.1253/jcj.62.512
  36. Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG. Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments.Kidney Int 1978; 14: 31-49 https://doi.org/10.1038/ki.1978.87