References
- Allen KS, Jorkasky DK, Arger PH, Velchik MG, Grumbach K, Coleman BG, Mintz MC, Betsch SE, Perloff LJ. Renal allografts: prospective analysis of Doppler sonography. Radiology 1988; 169: 371-376 https://doi.org/10.1148/radiology.169.2.3051114
- Aragno M, Cutrin JC, Mastrocola R, Perrelli MG, Restivo F, Poli G, Danni O, Boccuzzi G. Oxidative stress and kidney dysfunction due to ischemia/reperfusion in rat: attenuation by dehydroepiandrosterone. Kidney Int 2003; 64: 836-843 https://doi.org/10.1046/j.1523-1755.2003.00152.x
- Baines CP, Goto M, DowneyJM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 1997; 29: 207-216 https://doi.org/10.1006/jmcc.1996.0265
- Basile DP, Liapis H, Hammerman MR. Expression of bcl-2 and bax in regenerating rat renal tubules following ischemic injury. Am J Physiol 1997; 272: 640-647
- Baud L, Ardaillou R. Involvement of reactive oxygen species in kidney damage. Br Med Bull 1993; 49: 621-629 https://doi.org/10.1093/oxfordjournals.bmb.a072635
- Brezis M, Rosen S, Silva P, Epstein FH. Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J Clin Invest 1984; 73: 182-190 https://doi.org/10.1172/JCI111189
- Bryan CF, Luger AM, Martinez J, Muruve N, Nelson PW, Pierce GE, Ross G, Shield CF 3rd, Warady BA, Aeder MI, Helling TS. Cold ischemia time: an independent predictor of increased HLA class I antibody production after rejection of a primary cadaveric renal allograft. Transplantation 2001; 71: 875-879 https://doi.org/10.1097/00007890-200104150-00009
- Bulkley GB. Free radical-mediated reperfusion injury: a selective review. Br J Cancer Suppl 1987; 8:66-73
- Chiang YJ, Chu SH, Chuang CK, Chen HW, Chou CC, Chen Y, Wu CT. Resistive index cannot predict transplant kidney function. Transplant Proc 2003; 35: 94-95 https://doi.org/10.1016/S0041-1345(02)03802-2
- Cochrane J, Williams BT, Banerjee A, Harken AH, Burke TJ, CairnsCB, Shapiro JI. Ischemic preconditioning attenuates functional, metabolic, and morphologic injury from ischemic acute renal failure in the rat. Ren Fail 1999; 21: 135-145 https://doi.org/10.3109/08860229909066978
- Daemen MA, van de Ven MW, Heineman E, Buurman WA. Involvement of endogenous interleukin-10 and tumor necrosis factor-alpha in renal ischemia-reperfusion injury. Transplantation 1999; 67: 792-800 https://doi.org/10.1097/00007890-199903270-00003
- Das DK, Maulik N, Sato M, Ray PS. Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem 1999; 196: 59-67 https://doi.org/10.1023/A:1006966128795
- Dobyan DC, Nagle RB, Bulger RE. Acute tubular necrosis in the rat kidney following sustained hypotension: Physiologic and morphologic observations. Lab Invest 1977; 37: 411-422
- Finn WF. Enhanced recovery from postischemic acute renal failure. Micropuncture studies in the rat. Circ Res 1980; 46: 440-448 https://doi.org/10.1161/01.RES.46.3.440
- Glaumann B, Glaumann H, Trump BF. Studies of cellular recovery from injury. III. Ultrastructural studies on the recovery of the pars recta of the proximal tubule (P3 segment) of the rat kidney from temporary ischemia. Virchows Arch B Cell Pathol 1977; 25: 281-308
- Goes N, Urmson J, Ramassar V, Halloran PF. Ischemic acute tubular necrosis induces an extensive local cytokine response. Evidence for induction of interferon-gamma, transforming growth factor-beta 1, granulocyte-macrophage colony-stimulating factor, interleukin-2, and interleukin-10. Transplantation 1995; 59: 565-572 https://doi.org/10.1097/00007890-199502270-00022
- Gurel A, Armutcu F, Sahin S, Sogut S, Ozyurt H, Gulec M, Kutlu N O, Akyol O. Protective role of alphatocopherol and caffeic acid phenethyl ester on ischemiareperfusion injury via nitric oxide and myeloperoxidase in rat kidneys. Clin Chim Acta 2004; 339: 33-41 https://doi.org/10.1016/j.cccn.2003.09.013
- Heine GH, Girndt M, Sester U, Kohler H. No rise in renal Doppler resistance indices at peak serum levels of cyclosporin A in stable kidney transplant patients. Nephrol Dial Transplant 2003; 18: 1639-1643 https://doi.org/10.1093/ndt/gfg197
- Hoshinaga K, Shiroki R, Fujita T, Kanno T, Naide Y. The fate of 359 renal allografts harvested from non-heart beating cadaver donors at a single center. Clin Transpl 1998; 12: 213-220
- Hotter G, Closa D, Prados M, Fernandez-Cruz L, Prats N, Gelpi E, Rosello-Catafau J. Intestinal preconditioning is mediated by a transient increase in nitric oxide. Biochem Biophys Res Commun 1996; 222: 27-32 https://doi.org/10.1006/bbrc.1996.0692
- Ibrahim S, Jacobs F, Zukin Y, Enriquez D, Holt D, Baldwin W 3rd, Sanfilippo F, Ratner LE. Immunohistochemical manifestations of unilateral kidney ischemia. Clin Transplant 1996; 10: 646-652
- Jefayri MK, Grace PA, Mathie RT. Attenuation of reperfusion injury by renal ischaemic preconditioning: the role of nitric oxide. BJU Int 2000; 85: 1007-1013 https://doi.org/10.1046/j.1464-410x.2000.00678.x
- Jerome SN, Akimitsu T, Gute DC, Korthuis RJ. Ischemic preconditioning attenuates capillary no-reflow induced by prolonged ischemia and reperfusion.Am J Physiol 1995; 268: 2063-2067
- Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, Bonventre JV. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 1996; 97: 1056-1063 https://doi.org/10.1172/JCI118498
- Kitada H, Sugitani A, Yamamoto H, Otomo N, Okabe Y, Inoue S, Nishiyama K, Morisaki T, Tanaka M. Attenuation of renal ischemia-reperfusion injury by FR167653 in dogs. Surgery 2002; 131: 654-662 https://doi.org/10.1067/msy.2002.124629
- Lee CM, Carter JT, Randall HB, Hiose R, Stock PG, Melzer JS, Dafoe DC, Freise CE, Alfrey EJ. The effect of age and prolonged cold ischemia times on the national allocation of cadaveric renal allografts. J Surg Res 2000; 91: 83-88 https://doi.org/10.1006/jsre.2000.5921
- Meyer M, Paushter D, Steinmuller DR. The use of duplex Doppler ultrasonography to evaluate renal allograft dysfunction. Transplantation 1990; 50: 974-978 https://doi.org/10.1097/00007890-199012000-00015
- Nakano A, Liu GS, Heusch G, DowneyJM, Cohen MV. Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol 2000; 32: 1159-1167 https://doi.org/10.1006/jmcc.2000.1152
- Reimer KA, Ganote CE, JenningsRB. Alterations in renal cortex following ischemic injury. Ultrastructure of proximal tubules after ischemia or autolysis. Lab Invest 1972; 26: 347-363
- Sakura H, Ammala C, Smith PA, Gribble FM, Ashcroft FM. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett 1995; 377: 338-344 https://doi.org/10.1016/0014-5793(95)01369-5
- Sekhon CS, Sekhon BK, Singh I, Orak JK, Singh AK. Attenuation of renal ischemia/reperfusion injury by a triple drug combination therapy. Journal of Nephrology 2003; 16: 63-74
- Shackleton CR, Ettinger SL, McLoughlin MG, Scudamore CH, Miller RR, Keown PA. Effect of recovery from ischemic injury on class I and class II MHC antigen expression.Transplantation 1990; 49: 641-644 https://doi.org/10.1097/00007890-199003000-00032
- Shanley PF, Rosen MD, Brezis M, Silva P, Epstein FH, Rosen S. Topography of focal proximal tubular necrosis after ischemia with reflow in the rat kidney. Am J Pathol 1986; 22: 462-468
- Shoskes DA, Parfrey NA, Halloran PF. Increased major histocompatibility complex antigen expression in unilateral ischemic acute tubular necrosis in the mouse. Transplantation 1990; 49: 201-207 https://doi.org/10.1097/00007890-199001000-00045
- Tanaka M, Fujiwara H, Yamasaki K, Yokota R, Doyama K, Inada T, Ohtani S, Fujiwara T, Sasayama S. Expression of heat shock protein after ischemic preconditioning in rabbit hearts. Jpn Circ J 1998; 62: 512-516 https://doi.org/10.1253/jcj.62.512
- Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG. Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments.Kidney Int 1978; 14: 31-49 https://doi.org/10.1038/ki.1978.87