References
- Y. Huh, An elementary set for embedded bouquet graphs with two cycles, Preprint
-
Y. Huh, G. T. Jin, and S. Oh, An elementary set for
$\theta_{n}$ -curve projections, J. Knot Theory Ramifications 11 (2002), no. 8, 1243-1250 https://doi.org/10.1142/S0218216502002220 - Y. Huh and S. Oh, Planar graphs producing no strongly almost trivial embedding, J. Graph Theory 43 (2003), no. 4, 319-326 https://doi.org/10.1002/jgt.10123
- Y. Huh and K. Taniyama, Identifiable projections of spatial graphs, J. Knot Theory Ramifications 13 (2004), no. 8, 991-998 https://doi.org/10.1142/S0218216504003640
- K. Taniyama, A partial order of knots, Tokyo J. Math. 12 (1989), no. 1, 205-229 https://doi.org/10.3836/tjm/1270133558
- K. Taniyama, A partial order of links, Tokyo J. Math. 12 (1989), no. 2, 475-484 https://doi.org/10.3836/tjm/1270133192
- K. Taniyama, Knotted projections of planar graphs, Proc. Amer. Math. Soc. 123 (1995), no. 11, 3575-3579 https://doi.org/10.2307/2161110
- K. Taniyama and C. Yoshioka, Regular projections of knotted handcuff graphs, J. Knot Theory Ramifications 7 (1998), no. 4, 509-517 https://doi.org/10.1142/S0218216598000279
- Y. Yokota, Topological invariants of graphs in 3-space, Topology 35 (1996), no. 1, 77-87 https://doi.org/10.1016/0040-9383(95)00002-X
Cited by
- AN ELEMENTARY SET FOR EMBEDDED BOUQUET GRAPHS WITH TWO CYCLES vol.20, pp.02, 2011, https://doi.org/10.1142/S0218216511008796