References
- M. Avriel, W. E. Diewert, S. Schaible, and I. Zang, Generalized Concavity, Plenum Press, New York, 1988
- G. Beer and D. Pai, Proximal maps, prox maps and coincidence points, Numer. Funct. Anal. Optim. 11 (1990), no. 5-6, 429-448 https://doi.org/10.1080/01630569008816382
- K. C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985
- G. Debreu, A social equilibrium existence theorem, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 886-893 https://doi.org/10.1073/pnas.38.10.886
- J. Dugundji and A. Granas, Fixed Point Theory. I, Polish Sci. Publ., Warsaw, 1982
- K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 121-126 https://doi.org/10.1073/pnas.38.2.121
- K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 42-47 https://doi.org/10.1073/pnas.39.1.42
- K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240 https://doi.org/10.1007/BF01110225
- J. Friedman, Oligopoly and the Theory of Games, North-Holland, Amsterdam, 1977
- I. Joo, Answer to a problem of M. Horvath and A. Sovegjarto, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 29 (1986), 203-207 (1987)
- W. K. Kim and K. H. Lee, The existence of Nash equilibrium in n-person games with C-concavity, Comput. Math. Appl. 44 (2002), no. 8-9, 1219-1228 https://doi.org/10.1016/S0898-1221(02)00228-6
- W. K. Kim and K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2006), no. 2, 433-446 https://doi.org/10.1016/j.jmaa.2005.04.053
- M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152 (1990), no. 1, 46-60 https://doi.org/10.1016/0022-247X(90)90092-T
- J. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 48-49 https://doi.org/10.1073/pnas.36.1.48
- J. Nash, Non-cooperative games, Ann. of Math. (2) 54 (1951), 286-295 https://doi.org/10.2307/1969529
- H. Nikaido and K. Isoda, Note on non-cooperative convex games, Pacific J. Math. 5 (1955), 807-815 https://doi.org/10.2140/pjm.1955.5.807
- K. Nishimura and J. Friedman, Existence of Nash equilibrium in n-person games without quasiconcavity, Internat. Econom. Rev. 22 (1981), no. 3, 637-648 https://doi.org/10.2307/2526164
- S. Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), no. 1, 104-113 https://doi.org/10.1016/0022-247X(78)90222-6
- S. Sadiq Basha and P. Veeramani, Best proximity pairs and best approximations, Acta Sci. Math. (Szeged) 63 (1997), no. 1-2, 289-300
- S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory 103 (2000), no. 1, 119-129 https://doi.org/10.1006/jath.1999.3415
- V. M. Sehgal and S. P. Singh, A generalization to multifunctions of Fan's best approximation theorem, Proc. Amer. Math. Soc. 102 (1988), no. 3, 534-537 https://doi.org/10.2307/2047217
- I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970
- P. S. Srinivasan and P. Veeramani, On best proximity pair theorems and fixed-point theorems, Abstr. Appl. Anal. 2003 (2003), no. 1, 33-47 https://doi.org/10.1155/S1085337503209064
- P. S. Srinivasan and P. Veeramani, On existence of equilibrium pair for constrained generalized games, Fixed Point Theory Appl. 2004 (2004), no. 1, 21-29 https://doi.org/10.1155/S1687182004308132
Cited by
- A Note on Existence and Convergence of Best Proximity Points for Pointwise Cyclic Contractions vol.32, pp.7, 2011, https://doi.org/10.1080/01630563.2011.578900
- Equilibria of free abstract economies via best proximity point theorems 2018, https://doi.org/10.1007/s40590-017-0175-5
- Nash equilibria without continuity of the choice rules vol.31, pp.4, 2011, https://doi.org/10.1016/S0252-9602(11)60339-1