DOI QR코드

DOI QR Code

BEST PROXIMITY PAIRS AND NASH EQUILIBRIUM PAIRS

  • Kim, Won-Kyu (Department of Mathematics Education Chungbuk National University) ;
  • Kum, Sang-Ho (Department of Mathematics Education Chungbuk National University)
  • Published : 2008.09.30

Abstract

Main purpose of this paper is to combine the optimal form of Fan's best approximation theorem and Nash's equilibrium existence theorem into a single existence theorem simultaneously. For this, we first prove a general best proximity pair theorem which includes a number of known best proximity theorems. Next, we will introduce a new equilibrium concept for a generalized Nash game with normal form, and as applications, we will prove new existence theorems of Nash equilibrium pairs for generalized Nash games with normal form.

Keywords

References

  1. M. Avriel, W. E. Diewert, S. Schaible, and I. Zang, Generalized Concavity, Plenum Press, New York, 1988
  2. G. Beer and D. Pai, Proximal maps, prox maps and coincidence points, Numer. Funct. Anal. Optim. 11 (1990), no. 5-6, 429-448 https://doi.org/10.1080/01630569008816382
  3. K. C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985
  4. G. Debreu, A social equilibrium existence theorem, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 886-893 https://doi.org/10.1073/pnas.38.10.886
  5. J. Dugundji and A. Granas, Fixed Point Theory. I, Polish Sci. Publ., Warsaw, 1982
  6. K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 121-126 https://doi.org/10.1073/pnas.38.2.121
  7. K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 42-47 https://doi.org/10.1073/pnas.39.1.42
  8. K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240 https://doi.org/10.1007/BF01110225
  9. J. Friedman, Oligopoly and the Theory of Games, North-Holland, Amsterdam, 1977
  10. I. Joo, Answer to a problem of M. Horvath and A. Sovegjarto, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 29 (1986), 203-207 (1987)
  11. W. K. Kim and K. H. Lee, The existence of Nash equilibrium in n-person games with C-concavity, Comput. Math. Appl. 44 (2002), no. 8-9, 1219-1228 https://doi.org/10.1016/S0898-1221(02)00228-6
  12. W. K. Kim and K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2006), no. 2, 433-446 https://doi.org/10.1016/j.jmaa.2005.04.053
  13. M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152 (1990), no. 1, 46-60 https://doi.org/10.1016/0022-247X(90)90092-T
  14. J. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 48-49 https://doi.org/10.1073/pnas.36.1.48
  15. J. Nash, Non-cooperative games, Ann. of Math. (2) 54 (1951), 286-295 https://doi.org/10.2307/1969529
  16. H. Nikaido and K. Isoda, Note on non-cooperative convex games, Pacific J. Math. 5 (1955), 807-815 https://doi.org/10.2140/pjm.1955.5.807
  17. K. Nishimura and J. Friedman, Existence of Nash equilibrium in n-person games without quasiconcavity, Internat. Econom. Rev. 22 (1981), no. 3, 637-648 https://doi.org/10.2307/2526164
  18. S. Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), no. 1, 104-113 https://doi.org/10.1016/0022-247X(78)90222-6
  19. S. Sadiq Basha and P. Veeramani, Best proximity pairs and best approximations, Acta Sci. Math. (Szeged) 63 (1997), no. 1-2, 289-300
  20. S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory 103 (2000), no. 1, 119-129 https://doi.org/10.1006/jath.1999.3415
  21. V. M. Sehgal and S. P. Singh, A generalization to multifunctions of Fan's best approximation theorem, Proc. Amer. Math. Soc. 102 (1988), no. 3, 534-537 https://doi.org/10.2307/2047217
  22. I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970
  23. P. S. Srinivasan and P. Veeramani, On best proximity pair theorems and fixed-point theorems, Abstr. Appl. Anal. 2003 (2003), no. 1, 33-47 https://doi.org/10.1155/S1085337503209064
  24. P. S. Srinivasan and P. Veeramani, On existence of equilibrium pair for constrained generalized games, Fixed Point Theory Appl. 2004 (2004), no. 1, 21-29 https://doi.org/10.1155/S1687182004308132

Cited by

  1. A Note on Existence and Convergence of Best Proximity Points for Pointwise Cyclic Contractions vol.32, pp.7, 2011, https://doi.org/10.1080/01630563.2011.578900
  2. Equilibria of free abstract economies via best proximity point theorems 2018, https://doi.org/10.1007/s40590-017-0175-5
  3. Nash equilibria without continuity of the choice rules vol.31, pp.4, 2011, https://doi.org/10.1016/S0252-9602(11)60339-1