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PROJECTIVE DOMAINS WITH NON-COMPACT
AUTOMORPHISM GROUPS I

CHAHNGWOO Y1

ABSTRACT. Most of domains people have studied are convex bounded
projective (or affine) domains. Edith Socié-Méthou [15] characterized el-
lipsoid in R™ by studying projective automorphism of convex body. In
this paper, we showed convex and bounded projective domains can be
identified from local data of their boundary points using scaling technique
developed by several mathematicians. It can be found that how the scal-
ing technique combined with properties of projective transformations is
used to do that for a projective domain given local data around singular
boundary point. Furthermore, we identify even unbounded or non-convex
projective domains from its local data about a boundary point.

1. Imtroduction

In (G, X)-manifold theory, the developing map plays a crucial role since it
is essentially a global chart map defined on the universal covering space of
the manifold. Through the developing map, the covering action induces the
holonomy group action on the developing image equivariantly and the holonomy
group H C G acts syndetically as an automorphism group when the (G, X)-
manifold is compact. Therefore, the study of a syndetic domain which has a
compact generating subset by automorphism group is directly related to the
study of a compact (G, X )-manifold.

Kuiper [12] divided the convex subsets of S™ which is the double covering
of the projective space RP™ into three types C%, C® and C¢-sets. In affine
domains, Vey [16] showed that a convex saillant (which means that there is no
affine full line) syndetic domain is a cone if the action is properly discontinuous.
For projective domains, Benzécri [3] gave a deep and important description of
convex bounded syndetic domains. He used the method which might be a
source of inspiration of the “scaling method” so called by geometric analysts.
In several complex variables, the scaling method was initiated by S. Pinchuk
in the late 1970’s. We can see the idea of the Pinchuk scaling technique in

Received May 9, 2006; Revised October 23, 2006.

2000 Mathematics Subject Classification. 53A20.

Key words and phrases. quadratic, projective domains, automorphism, ellipsoid, scaling
sequence, unbounded domains.

(©2008 The Korean Mathematical Society
1221



1222 CHAHNGWOO YI

[14] and an example of the scaling method in [1], [2], [9] in several complex
variables, when the automorphism group is non-compact.

The intrinsic metrics such as Hilbert metric, Kobayashi metric, and affine in-
variant metric defined by Vey, play a very important role in convex bounded or
saillant projective domains as well as in several variable complex domains. As
we see in papers like [3], [4], [11], [16], these metrics are crucial, for example, in
the proof of Vey’s theorems. Many results Benzécri proved in [3] can be drawn
using the scaling method for the projective domains having non-compact auto-
morphism groups without assuming that the domain is syndetic. Furthermore,
we sometimes can handle even unbounded domains and non-convex domains
which may contain an affine full line. This is one of the main theme in this
paper.

The idea of the proof in Kim’s book [10] of the Ball Characterization The-
orem (Wong-Rosay Theorem) using the scaling method is that if one knows
the local boundary equation(s) of a domain €, then (2 is determined by these
equation(s) using the scaling method. We can apply the scaling method used
in the study of complex domains to the projective domains and obtain some
results about convex projective domains using affine scaling sequence together
with Benzécri’s theorem [3]. In the case of non-convex or unbounded, i.e.,
non-hyperbolic domains, the intrinsic metrics mentioned above cannot be used
for these domains since they are not distance any more. Without using these
intrinsic metrics, we’ll scale the projective domains with a local description at
a boundary point along with the simplex at another boundary point or interior
point to find out that the whole original domain is really the domain described
by the local equation(s). The following result proved using scaling technique
may be proved in a different way.

Theorem. Suppose that there is ¢ € Q and {p,} C Aut(Q) such that
Jim ¢, (q) = p € 6Q.

If 6Q is C? in a neighborhood of p which is strictly convez, then Q is projectively
equivalent to a paraboloid, i.e., a ball.

The condition of this theorem is weaker than Edith Socié-Méthou’s result [15]
which assumes Hessian is non-degenerate at every boundary point. However, we
cannot apply the scaling method directly to an unbounded domain but should
observe how points converge to the accumulation point(s) carefully. Taking
care of convergence, we can generalize the above theorem to the unbounded or
non-convex domains:

Theorem. Let {h(Q),G"} be an h-normalization of Q of dimension n and
{pv} C Aut(Q). Suppose that Q is C? in a neighborhood of ¢ € 0Q with
R(p) = {q}. If *MyynHpyM,n # 0 on R™, where Hy, is the Hessian matriz
at p = ha(q) = (eny1), then § is projectively equivalent to one of quadratic
domains Q(ba, ..., by).
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As an application of this theorem, we get the following result for unbounded
and non-convex domains.

Corollary. Let Q@ C RP" be a domain whose boundary is C? and not qua-
dratic. If {¢.} is a sequence of automorphisms whose limit has a range of
one point, then every point in an open dense subset converges to the boundary
accumulation point q along degenerate directions at q.

Section 2 contains basic concepts in projective geometry and basic properties
of non-compact automorphism group. In Section 3, we introduce a kind of
“normalization” of domain and its automorphism sequence to handle domain
and its local equations in a convenient way and showed a few theorems which
is used to prove main theorems. We proved the Ball Characterization Theorem
for projective domains in Section 4. In Section 5, we applied the technique in
Section 4 to domains with a local C? boundary equation at a boundary point
without hyperbolic assumption.

2. Basic property of non-compact automorphism groups

We’ll summarize some basic facts developed by Myrberg and then used by
Kuiper and Benzécri in the study of projective domains and its automorphism
groups. We will also discuss a basic theorems obtained as a consequence of
non-compactness of the automorphism group.

A projective domain 2 of dimension n is an open subset of RP™. For a
given projective domain 2, Aut(Q) is the group of all projective transformation
which preserves (2, i.e., Aut(Q) = {f € PGL(n + 1,R) | f(©2) = Q}. Since
Pgl{(n +1,R) is a compactification of PGL(n+ 1,R), there exists a convergent
subsequence of {f;} for any sequence {f;} C PGL(n + 1,R) whose limit is, in
general, in Pgl(n + 1,R)}.

Definition 1. We say that an element f € Pgl(n + 1,R) is singular if f €
Pgi(n+1,R) — PGL(n + 1,R).

The kernel K(f) and the range R(f) is the projectivization of the kernel and
image of a representative matrix of a singular element f, respectively. Thus the
domain of a singular element f is RP™ — K(f). Suppose that f = lim;_,. f;
is singular. Choose a subsequence of { fj_l} which converges to an element
g € Pgl(n + 1,R). Then R(f) C K(g) and R(g) C K(f) (See [8]). The
following proposition is not hard to show, so we’ll not prove it.

Proposition 1. Let v € PGL(n+ 1,R) and f € Pgl(n+ 1,R). Then
(1) K(fv) =~""K(f).
(2) R(f) = R(fv).
(3) K(f) = K(vf).
4) vR(f) = R(1f).
Remark. In (1), when f is a singular projective transformation, we can think

of fv as a singular projective transformation given by the product of any rep-
resentatives of f and ~.
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General relations of range or kernel with a sequence of projective transfor-
mations were observed by Benzécri.

Theorem 1 (Benzécri). (1) For any compact K C RP™ — K(f), f; |k

converges uniformly to f k.

(2) For any compact K C RP™ — R(f), and for any neighborhood N of
K(f), there exists jo such that fjf"l(K) C N forall § > 5.

(3) For any open U with U N K(f) # 0, there exists a compact subset
B C U such that lim;_. f;(B) = R(f).

(4) Let U be an open set with U N R(f) # 0 and K be a compact subset
of /YU NR(f)) and KN K(f) = 0. Then there exists 30 such that
K C f71(U) for all j > 5.

Proof. See Benzécri’s paper [3]. O

Let ©2; and €, be open domains in RP™. We'll call (04, 2) a pair if 09 =
(‘9&22 and Ql N QQ = @ and Q(i = —Qg. Clearly, Ql U QQ U 891 = RP"™. Due to
the above Theorem 1, we can get the following theorem. The essential content
of the theorem must be well known but we state and prove in the useful form
for our purpose.

Theorem 2. Let Q2 be a domain of a pair and ils automorphism group Aut{Q)
be non-compact. Then there ezist ¢ € 2, p € 0%, and a sequence {f;} C Aut(Q2)
such that im; .o f;(q) = p with ¢ € K(f), where f = lim; .o f; is singular.

Remark. We will call such a point p € 9Q a boundary accumulation point.

Proof. Being Aut(f) non-compact, there is a sequence {f;} whose limit is
singular. Let g = lim;_.o fj_l by extracting a subsequence. Clearly, g is
singular, if not, f is not singular. Let 2, (' be the pair. We can consider three
cases:

(i) K(f) coQ,

(i) K(f)NnQ #0, and

(1) K(f/)nQ' #£0.

(i) K(f) C 0Q. Let z € K(f) and U be any neighborhood of z. Then there
exists a compact subset B C U such that BNK(f) =0, BNQ # 0, BNQY # 0,
and lim;_.o f;{B) = R(f). Now, we have two cases to be considered.

(a) R(f)NQ = 0. Clearly, R(f) C . We see that lim;_.., f;(BNQ) C
R(f) C . Due to lim;_.o f;(BNQ) C 0, it follows that lim; ., f;(BNQ) C
QN = 9. Hence fj(g) — p for some p € dQ and ¢ € BN C Q with
q & K(f).

() R(fINQ#0. Let y € R(Ff)NQ C Q. Since R(f) C K(g), we have
y € K(g). Take any neighborhood A4 of y contained in ). From theorem 1, there
is a compact subset B C A such that BNK(g) = 0 and lim;_,« f]-_l(B) = R(g)
which is contained in K(f) ¢ 0Q. Hence fj"'l(q) — p for some p € 90 and
g € B CQ with ¢ € K(g).
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(i) K(f)NQ # 0. For any y € ' — K(f), we see that f;(y) — f(y) €
' NR(f). This implies R(f) —Q is nonempty. Take z € K(f)N{ and an open
neighborhood U of z contained in Q. There exists a compact subset B C U so
that R(f) = lim;_,c0 f;(B) C Q. Hence the result follows.

(iii) K(f)NQ' # . Change the role of Q2 and €’ and use the same argument
as the proof of (ii) O

3. h-normalization

We will define an “h-normalization” of a sequence {p,} in Aut(Q2), where
Aut(Q) € PGL(n+ 1,R) is the automorphism group of a projective domain {2
in RP™. If ¢ is the limit of a subsequence of {¢, }, an h-normalization makes a
representative matrix of the limit ¢ diagonal and decomposes the kernel K ()
and range R(y) of the limit ¢ so that they are disjoint when ¢ is singular.

Let A € GL(n+1,R). Tt is a well-known fact that A has a polar decomposi-
tion BC, where B is a positive definite symmetric matrix and C € O(n+1,R).
In addition, B is similar to a diagonal matrix by an orthogonal matrix P €
O(n + 1,R). Combining these, one has A = PD(Q, where P,Q € O(n + 1,R)
and D € GL(n + 1,R) is a diagonal matrix.

Suppose that  C RP" is a projective domain with its automorphism group
Aut(Q) € PGL(n + 1,R). If {p,|v = 1,2,...} is a sequence in Aut(f2), then
there exists a subsequential limit ¢ since the projectivization Pgl(n + 1,R)
is compact, where gi(n + 1,R) is the general linear group. We assume that
¢ € Pgl(n+1,R)— PGL(n+1,R), i.e., ¢ is singular. Especially, this is the case
when Aut(Q) is non-compact. A representative matrix A € gl(n+1,R) of pisa
nongzero singular matrix so that the kernel and range of A are nontrivial. Denote
K(p), R(p) the projectivizations of the kernel and range of A, respectively.
Note that dim K (p) + dimR(p) = n — 1. Let A, = [a};] € GL{(n + 1,R) be
a representative matrix of ¢, for each v. From the previous paragraph, we
have 4, = P,D,Q,, where P,,Q, € O(n+1,R) and D, € GL(n+ 1,R) is a
diagonal matrix. Since O(n + 1,R) is compact, by extracting a subsequence, if
necessary, there exist limits P, @ € O(n + 1,R) such that P = lim, .o P, and
Q = limy 0@, Then denoting A = lim, o 4,, D = P~1AQ! is a diagonal
matrix because

D= lim D, = lim P1A,Q)h
(We can take an Lo-norm for the convergence.) Let hi,hy be the projective
transformations corresponding to @, P~?, respectively. One gets a singular
map " corresponding to D € gl(n+1,R). Thus, {@¢, = hop,hT '} has a (sub-
sequential) limit ¢® = hoph;'. Let d = (n +1) — (1 + dim R(p)). We see that
P~1AQ™! is of the form, up to an order of the standard basis {e1,...,ent+1},
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0 0
D(7d+17"'77n51): Yd+1 0
Yd+2
0 . 1 + dim R(y),
0 1
1+ dim R(p)

where 0 < |y;| < 1for d+1 < i < n. Consequently, we have that I-Y(K(ph)®
O (R(¢")) = R*"*1 where II : R**! — RP™ is the canonical projec-
tion map. We obtained new domains h1(2), h2(Q) and a subset G" = {f €
PGL(n 4+ 1,R)|f : h1(Q) — h2(Q)} of projective transformations such that
both of h1 () and hy(S2) are projectively equivalent to the original domain €2
and G" is homeomorphic to the automorphism group Aut(2?). The homeomor-
phism ¢, : Aut(Q) — G" is given by ¢4 (f) = haofhy" for f € Aut(Q). This is
a kind of “normalization” of the pair (€2, {¢,}). Note that if k1 = hs, then G"
is a group isomorphic to Aut(Q) by t,. We can summarize as the following.

Proposition 2. Let Q be a projective domain and {p,} C Aut(Q) with a
subsequential limit . Then there exists a pair of projective transformations
hi, he such that o subsequential limit howh " of the sequence {hgcp,,hl_l} has a
diagonal matriz as its representative and satisfies

(*) I (K (haphi ")) @ I (R(hawhy 1)) = R™1.

Remark. Note that R(howh]!) = hoR(phT!) = hoR(p) and K (hawhi') =
K(ph!) = MK ().

Definition 2. For a given projective domain §2 and a sequence {¢, } C Aut(Q2),
we define {h(Q),G"} to be the triple {h1(R),h2(),G"} and call it an h-
normalization of the pair Q and {(, }. In this case, we say {¢, } is h-normalized.
Denote a subsequential limit of an h-normalized sequence {y,} by " and
h = (h1, ha).

Remark. One can easily show that the diagonal matrix of an h-normalization
for a given sequence {¢,} C Aut(f), hence the limit ©" is independent of
change of orthogonal basis of R"*!.

From now on, we always assume that ©" has its representative matrix of
the form D(¥441,.--,7n,1) in Fig.1. This can be done by the previous remark
and the representative matrix is defined up to nonzero constant. After an
h-normalization, one sees that a;; — 0 for 1 < ¢ < d1<j<n+1and
al; = dyviford+1<i<nl<j<n+l For each i € {1,...,d}, by
extracting a subsequence if necessary, there is a sequence {az'.’s(l)} such that

<1forl<j<n+1, where s(z) € {1,...,n+ 1}, ie., the

v
a;;
a?

is(2)

limu—boo
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sequence {laj, |} decreases at the slowest rate among {a;} for 1 < j <n+1.

)

Note that, by a subsequence, if necessary, aé’s(l) #0foralvandl <i<d
since 4, € GL(n + 1,R). Let {a”} € {{a;s0)}1 < i < d} be a sequence, by
extracting a subsequence, if necessary, such that lim, _. 1“’;5#‘ <'1. We shall
call the sequence {a”} a primary sequence of ¢*. Let I = {(i,7)|1 <i<d,1<
j<n+1}. For1<i<n,1<j<n+1, define

a¥.
lim -2 for (i,7) € I,
al/

CGij = e
0 for (z,7) € I.
Let p=1[0:-.-:0: 1] € RP* The affine coordinate ¢ : U — R" x
{1} € R™*! defined by ¥([z; : -+ : Tpp1]) = (m:L e m:zl,l) is called the
©"-related affine coordinate. For simplicity, we write ([z1 : -+ : Zni1]) =
(w:iu b wiL) when the meaning is clear. So, ¥/(p) = (0,1) or ¢¥(p) = 0. We

will handle projective domains through this affine coordinate with the reference
point p. Let 5;7 be the vector (§;1,...,&mn+1). Let M, be an n x (n+ 1) matrix
defined by

av, if (3,5) €1,

ij
(¢,7)-th component of M, =

0 if (i,§) & 1.
Define Mn to be the n x (n + 1) matrix [ﬁfj] 1<i<n,1<j<n+1. This

is equivalent to

1
M@h = lim TMV

v—00 @
Now, we will state several useful facts which are used throughout this paper.

Proposition 3. Suppose that v is a sequence of projective transformations
which converges to a singular projective transformation ~v. Let x € K(v)
and limg_.oc vi(x) = y. If o is a line segment transverse to K(v) through x,
then there is a subsequence {yn} and o full affine line T through y such that
limy, oo Ym (o) = 7.

Proof. This was observed by Benzécri [3]. See [13] for the proof. O

4. Ball Characterization Theorem

We will reprove the Wong-Rosay Theorem or, Ball Characterization Theo-
rem using an affine scaling along simplex since its proof contains the main ideas
of this paper. Let © be a domain in RP" equipped with the metric induced
from the standard Euclidean metric. Suppose that there exist a neighborhood
N of z € 082 and a real-valued function p defined on N NQ satisfying (1) NNQ

is defined by p(z) < 0 (2) The gradient Vp = (_a& . —‘9&> is never zero

Oz, " Oz,
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at any point of N N Q. In this case, p is called a defining function of Q at
z. For z € RP™, an n-simplex at x to be a convex n-simplex with a vertex
x. The vertices other than z of the n-simplex at = are called the end points
of the n-s‘implez at xz and a line segment connecting z and an end point of the
n-simplex at x is called an axis of the n-simplex at x. We call the simplex with
vertices (0,...,0),(1,0,...,0),...,(0,...,0,1) the standard unit simplez at 0
in an affine coordinate. Now, we will present one of main theorems which is
the first application with our scaling method using simplex.

Theorem 3. Suppose that there is ¢ € Q and {,} C Aut(Q) such that
lim ¢, (q) = p € 9N. If 9N is C? in a neighborhood of p which is strictly

convez, then Q is projectively equivalent to a paraboloid, i.e., a ball.

Remark. (1) 0N is strictly convex in a neighborhood V' of p € 09 if Hessian at
p is positive definite in V' N 3.

(2) Theorem 3 is a “projective” version of Ball Characterization Theorem.
(3) We can find two different approaches for this theorem in Edith Socié-Méthou
and B. Colbois and P. Verovic’s papers ([4], [15]). The scaling method lets us
relax the assumptions in those papers.

Proof. First, by the Proposition 3, one can see that ¢ ¢ K () for a subsequen-
tial limit ¢ of {¢, } since p is a strictly convex point. If one takes an open neigh-
borhood N C Q of g such that N N K(p) = @, then the limit lim,_,o . (N)
is open in R(yp) containing p because the limit map ¢ is open. Thus (N)
must be tangential to 8 at p. It follows that dim R(p) N 0N = dim R(p). For
the proof of this, see “A rigidity result for domains with a locally strictly con-
vex point” by Kyeonghee Jo. By strictly convexity, one obtains R{p) = {p}.
Take a simplex Ey at py € 00 such that Eo N K(p) = 0 and n — 1 axes are
tangent to 00 at po. Then the first axis is transversal to T,,0§2. Take an
affine coordinate ¢ : Uy — R™ x {1} with ¢(p) = 0 and py € Up. Denote
wulpo) = (cf,...,c%) = ¢” and let {e3,...,e5} be the end points of the axes
of Ey, where the axis having end point €9, is not tangential to 9{2. We know
that ¢, (Ep) — @(Eg) = p uniformly. Hence ¢, (pp) — p = 0 and ¢, (eS) — 0
uniformly. From the Taylor expansion of second order and an orthogonal basis
change of R"*1, if necessary, there exists a neighborhood U of p such that UN{
is defined by '

p(z) = —z1 4+ dox2 + - 4+ 6,22 + o(|'z1|?) < O,

where p is the defining function and all §; € R are positive. Note that for all
£e{2,...,n}, one has §; # 0 since p is a strictly convex point. For brevity, we
write 'z1 = (z2,...,Z,). Now, we define affine coordinate changes as follows.
(I) For each v,

n
& — y1=x1—c’{—ZaZ(xg—c;’)
v =2

Yo =Tp — ¢ £=2,...,n,
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where a}’s are determined so that, in the coordinate (y1,. .., ¥yn), (i) ®,(c”) is
the point (0,...,0) € 9Q (ii) The tangent space to 9Q at (0,...,0) is given
by {y | y1 = 0}. Let d¥ = (d¥,...,d%) = p,(e5). If ®,(d) = (BY,...,0%),
B =d{ —c{ - > ,_,ay(dy —c¥). If one consider an n-frame at pg, there are
2™ simplexes at pg satisfying the same conditions as Ey. Thus, one can take
the simplex Ey at pg so that 8¥ > 0 for all v. For all sufficiently large v,

5%&1(0”) # 0 since ¢ — 0 as v — 0. So, determine a for £ =2,...,n, so that
3 8.t 3 3
0 = F(0)=3%} g2 (c ”)7;‘;(0) = ay52-(c") + 55(c")
dp. 3 AT g 3
0 = (0) =325 52(c") 52 (0) = ay g2 () + g (")

20! v . ,
It follows that 0 # ‘Zy 0) =>% azk( ) e (0) = 2L.(c”). Since all cj’s,
dy’s, ay’s approach 0 as v — oo, we have §f — 0 as v — oo. The defining

function p,(y) is, in this coordinate,

n
p¥) = —y1+ D AL yoyr + (G203 + -+ 8ny) + o' mil?) <0,

ag,7=2
where Ay is a function of ¢}’s (£ = 2,...,n) satisfying A} — 0asv — oo. If
we write
(EQ) p(z) — (=1 + 6025 + - + 6,22) = h(x2, ..., Tn),

then h is of class C? and h(zo,...,z,) € o/'z1|?).

Lemma 1. By the affine transformation ®,, the defining function can be writ-
ten as

pu(y) = - + Z AZTyayT + (52?/% +- 5ny127,) + 0(|Iy1|2) < 07

o, 7=2

where A — 0 asv — o0 for 2< 0,7 < n.

Proof. By the second order Taylor expansion of h at (cj,...,c%),
h(z2,...,zn) = h{ya+ch,...,yn+c)
n
4 v 8h v v
= h(c,...,c0)+ 25};(62’ ce CO )Y
=2
82h v ! 2
+ Z g e ol )
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By differentiating both sides of (EQ) for 2 < ¢,5,k < n,

Bzg( V) = 25@67 + g—zhl(cu), .
o vy — v — 1 5=
%—5‘;7(0 ) = 2665+ c% Bz (¢”), where 4, _{ 0 jAk

Because p is of class C?, every partial derivative is continuous so that g—fe (¢”) —
0, ——822;” (¢¥) — 0. Note that 0 = p(c’) = —c¥ + (02(cE)? + - + dn(ch)?) +

h(cs,...,cy) and af = ga%(c"). From (EQ), we have
n

pr(¥) = =y + e + D alye+a(y2 + c5)2 4+ n(yn + )
£

"+ h(ya+c,..,yn+ch)
n n n n
= — g+ YO+ + D 0(ch)?+ 2D dcye+ Y afue
¢ =2 ¢ ¢
+h(y2+cg77yn+c7yl)

n " n n
= -y + Z&eyf +c+ 252(0,’7)2 + 2Z5z027ye + ZG'ZW

c27 = n)+2 CZ,"' n)yf+ Z 8:0 61‘}9 : '707Vz)yjyk
i
+ol('1l?)
= -y1+Z5eyz + Z Ay yiy + o] i),
o,7=2
where AL, = B;?T—gh(cg,...,cm. O

The n—1 axes of E, = (®, 0, )(Ep) lie in the tangent space T(s, 00, )(pe) S
and the first axis is transversal to this tangent space by definition of ®, and
v, € Aut(2). So, Y cannot be 0 for all v. Define €, > 0 to be 3. Note that
€, — 0 as v — oo since @, (Eg) — p by R(p) =
(II) By the affine coordinate change ®,, one can see that (®, o ¢, )(ej) has the
first coordinate 0 for £ # 1. For each v, define

U1 =1
v, = v
uz:—ﬂ—ﬁy1+ye £=2,...,n
1

This linear transformation sends the axis of the simplex E, which is not tan-
gential at 0 to the normal direction at 0, i.e., on the x;-axis and all the other
axes are invariant, i.e., belong to the tangent space of the boundary 9%, () at
0. Denote By = |(®, o ¢, )(ef)| and (0,7%,,...,7%,) = (¥, o &, 0 @, )(ej) for
{=2,...,n
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lI‘V © (Dv
E, P Y Ve
0. (E)) \
) W

(IIT) We have (¥, o @, 0 p,)(e5) = (87,0,...,0) with 37 > 0. Define R, to

vy =1
be the affine transformation defined by the matrix (%?) on To{OA,), where
A, = (¥, 0P, 0¢,)(), so that R, ((¥, o @, 0¢,)(€7)) € u-axis.

(IV) Define an affine coordinate change I, as follows.

T =w
F = - \/ €
v Ty = V’LU[ E:Z...,n.
By ’
£

Now, all axes of the simplex (I', o R, o ¥, 0 ®, 0 ¢, )(Ey) which are tangential
to (I'yoR, oW, 0®, 0¢,)(2) at 0 are of length /€,. The defining function in
this Z-coordinate is

e aa S ar [(B N T V(B ST
po(E) =1+ Y Ay, (li,{l'l‘f';_z\/axk) (ﬁl,,ahﬁtgﬁwk

o, 7=2
n ﬂl’ n TV 2
+Y 5 (—‘,35;1 +y :ik>
=2 1 k:Z\/e—V

By . N~ Tk By N Tk
tol||(Z=231+ ) 15 ey ol E1 Y Tk )° ] <0.

Let D, be the intersection of a small neighborhood U of p = 0 and the domain
defined by p, (Z) > 0. Now, we introduce a sequence L, to blow up D, defined
by

Recall that €, = §7. This sequence preserves the tangent space and acts as a
homothety on the tangent space at 0 and each transformation sends the last
simplex to the standard unit simplex at 0. Then the defining function p, (Z) of
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the domain L,{D,) can be written as

n n n
(@) = -1+ Y A, (ﬁg:el + ngk:f:k) (/3;%1 + me)

o, 7=2 k=2 k=2
k(2 n 2
+) 5 (5;:&1 + Zﬁm)
£=2 k=2
n n
+o (|(5g£1 + ) TSy, ..., Bhd + Zr;kfzk){2> <0
k=2

Fo=2
By our construction, we see that all /€, 8;’s and r’,’s approach 0 as v — oo.
Compare the decreasing rates of these values and divide the above equation by

{law |2}, where {a.} € {({/&o }, {85}, {r%} | £,a,b = 2,...,n} has the slowest
decreasing rate by extracting a subsequence if necessary.

po(@) =~ mdt ZA (I ylx1+z ”’“)(l iy 1+§:| )

O‘T_
n n 2
By e -
+ ) S| —=d+ k3
; (iaul ;lau¥
1 n n
+ ke (mg:el + > hdk, .., Bk +Zr;k@k){2) <0
14

k=22 k=2
Th .. . . N . 8y . r
en all limits satisfy im, oo {521 < 1, lim, 500 |25 < 1, and lim,,_, gf <

1for 4,a,b=2,...,n. Also, note that ¢ — 0, A, — 0 and
1 n "
EWER (|(ﬁ;£1 + 3 g, ., BuE + Zrzki:k)ﬁ) -0
v k=2 k=2

as v — oo. Combining all the coordinate changes above, we have a sequence
of projective transformation

G, =L,ol,0R,0¥,0®,0¢,.
A subsequential limit yields a mapping G : @ — G(2) € Pgl(n + 1,R).
Lemma 2. G: Q — G(R) is a projective transformation.

Proof. By our construction of @,, ¥,,, R,, I',, and Ly, G, (Eyp) is the standard

unit simplex at 0 for all v. So, Eq N K(G) = 0 if G were singular. Otherwise,

there must exist an affine half line contained in lim G,(E¢) which is the closed
Ly (K

standard unit simplex at 0. Since Gy |5,— G |5, uniformly, G cannot be

singular. O

Tab
oy

Since at least one of coeflicients lim, oo ! %;,

for £,a,b = 2,...,n is not be zero, the hmlt equatmn is not trivial. From

and limy..co
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Proposition 2, if K = int(Ep) N2, we see G, (K) — G(K) uniformly and the
limit open set G(K) should be inside the set defined by the limit equation of
pv(Z) above so that the limit set cannot be contained in a lower dimensional
subset. Furthermore, the domain ) defined by the limit equation should be
projectively equivalent to £2 since G is a projective transformation. This implies
that the limit Ic:TVP as v — oo cannot be zero. Observe that all the coefficients
of the limit defining function cannot be 0 since 6,’s have the same sign, i.e.,

8¢ >0 forall £ € {2,...,n}. By a linear change of coordinate if necessary, the
limit equation must be

(*) pla)=—z1+ Y g} >0 withg #0 Vee{2,...,n}.
=2

The domain L,(D,) converges to the domain 1 defined by (x). Note that

Q= Q(ba, - .., by) such that all b,’s are positive, which is projectively equivalent
to an n-ball. O

Remark. In fact, Proposition 3 says that QN K () = 0. If QN K (p) # 0, the
limit lim,—, 0, (£) will be an affine full line in the closure 2 for any small line
segment £ C () transversal to K (). Since  is a ball, this is impossible.

Corollary 1. Suppose that Q is a syndetic domain. If OQ is C? in a neigh-
borhood of p which is strictly convex, then Q is projectively equivalent to a
paraboloid, i.e., a ball.

Proof. Syndetic action implies that there is a compact subset K C  such
that | cauq) @(K) = Q. If {Up| n = 1,2,...} is a family of open neigh-
borhoods of p with Upy1 C Uy, and (), U, = p € 09, we can find ¢, € K
such that ¢, (¢,) € Up. Let ¢ € K be a subsequential limit lim,_, ¢,. Then
limy o0 ¢n(¢) = p. Thus we have an interior point ¢ € K C Q and a se-

quence {y, } of automorphism group of §2 such that lim, .9, (q) = p. Apply
Theorem 3. |

5. Unbounded domains : quadratic domains

We can extend the idea of the previous section to unbounded projective
domains with C? boundary point. In this section, we will prove: if a domain
has a C? defining function at a boundary accumulation point, then it is one of
the quadratic domains defined by

Qaz,...,an) ={[zo : - : zn] € RP™|z0z1 + @223 + - - - + anz2 > 0,a; € R}.

Proofs depend on the dimension of the range through the boundary point.
Unlike ellipsoid, we need an additional assumption which is analyzed in 5.1.
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5.1. A geometric condition in scaling for quadratic domains

Let Q be an n-dimensional projective domain with {¢, } C Aut(£2). Suppose
that N, N 09 is C? for a tubular neighborhood N,, of R(yp). Let {r(£),G"}
be an h-normalization of Q and {g, }. Suppose that lim, oAy, = D(vat1,--

“n» 1) by a subsequence, where A, is a representative matrix of an h-normahzed
@y and D{(Yg41,---,7n,1) is a diagonal matrix with diagonal elements 0,.. .,
0,%Yd41s--- Yn, 1. If v € R™, we can think of v as an (n + 1)-vector by the
affine coordinate (v1,...,vn,1) — (v1,...,v,), and vice versa. By defini-
tion of Myn, limyco =M, = M,n, where M, is an n x (n + 1) matrix.
Suppose that there exists a point b = (by,...,b,,1) € R™ x {1} such that
H(Myn(b))HyMn(b) # 0. This is equivalent to (Mn(b), Myr(b))u, # O,
where (:,-) g, is the symmetric bilinear form on R™ defined by the Hessian H,
at p = 0. Since {i, } is normalized, 1~ (b) & K (¢"). In fact, v} (w) € K (")
for all w € R™ x {1}. Since |a”| # 0 for all v and lim, .o, a” = 0 for a primary
sequence {a”}, M (b) # 0 implies, by the definition of M, that M, (b) # 0
for all v in the ¢"-related affine coordinate ¥ so that (M, (b)| # 0 for all v
and lim, oo (1 0 M,)(b}) = 0 = 9(p), where |- | is the standard Euclidean
norm on R™. Recall that {a"} € {{a};}|]1 < i < d,1 < j < n+ 1} satis-

fies limydml;}’ <C, 1<i<4d,1<j<n+1, for some constant C. If
z =4 "1(b) € RP" — K(p"), lim,_,oo¢,(z) = p. Observe that

n-+1 n-1 N1 n+1

v v G1; Gnj
N albs,. Y akb; Zlal‘bj, - au,b
M,(b) _ \J=! J=1 U= j=1
2. (B)] ~ R .
n+1 n n-1 "
ai,.
Zazjbj> 2 (Za—&bf
j=1 i=1 \j=1
This implies that
; M, (b} M, (b) ) M (b)) M_(b)
() Jim (el et )y = {wemm W >g,, #0.

Since H), is a real symmetric matrix, the eigenvalues are real. If s,¢ are the
number of positive and negative eigenvalues of Hj, respectively, we say that
Hy is of signature (s, t). Define Z(H,) = {x € R"|{z,z)n, = 0}. Let S77" be
the unit sphere at the origin ¥(p) = 0 in the p"-related affine coordinate 1, (%)
implies that the direction of convergence of z by {¢.}, i.e., the limit of unit

vectors {%%gg—l} is away from Sp~' N Z(Hp).

Definition 3. Suppose (22, {p. }) is normalized by h = (h1, h2) and p = ha(q).
We say that z € RP™— K (p) converges to R{y) along a nondegenerate direction
at g by {p, } if Mn(b) # 0 and the limit of unit vectors {I_A-M%%%;—l} is away from
Sr—1NZ,, where Z, = hy ' (Z(H,)) and %(p) = (0,1), and b = ¢(z) € R"x{1}.
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It’s not hard to state similar definition when dim R(p) > 1 using projection.

Theorem 4. Let Q, {p,} be a projective domain and a sequence of automor-
phisms with an h-normalization by h = (hy, h). Assume that there ezists a
neighborhood Ny of R(p) = {q} C 09 such that QN N, is C*. Then the
followings are equivalent.
(1) *MynHpMn #0 on R™, where p = ha(q).
(2) There exists an open dense subset U such that each u € U converges to
R(p) along a nondegenerate direction at q.

Proof. We may assume that {p,} is h-normalized. Let B = "M nH, M,
where H,, is the n x n Hessian matrix of the defining function at p. B is
symmetric n x n so that V = {v € R"|'vBv = 0} is of dimension < n — 1.
Letting U = RP™ — K(o") UV gives (2). Conversely, if (2) holds, take any
point & € U converging to R(y) along a nondegenerate direction at g. Then
Mn(b) # 0 and M»(b)H, M (b) # 0, where ¥(z) = b € R™ x {1} since

. M, (b M, (b
0# lim [Mn(b)? <|M,Eb§|» |MVEng>H = (M (b), Mot (b))

5.2. Quadratic domains

We can handle quadratic domains which are neither convex nor bounded
when there is a sequence of points converging in a non-degenerate direction.

Theorem 5. Let {h(Q),G"} be an h-normalization of Q of dimension n and
{p.} C Aut(Q). Suppose that OQ is C? in a neighborhood of ¢ € O with
R(p) = {q}. If "M pnH M, # 0 on R", where Hy is the Hessian matriz at
p = ha(q) =(en+1), then Q is projectively equivalent to one of Q(ba, ..., by).

Remark. If we define Hy, = [6,,] and £ = [¢},], then
tMsohHPMsoh = t[gfk][&”][ Bl = *€[05- €.

Proof. We shall take the same notation {y,} for an h-normalized sequence of
{pv}. Let [z1 : --- : zp41] be a homogeneous coordinate of z € RP™. Take a
¢h-related affine coordinate 1 defined by

w([w“'":wml]):(zl L. 1)

¥ ) )
Tn+1 Tn+1

so that ¥(p) = 0 and from the Taylor series expansion of second order at 0,
ho(€) is expressed by

p(z1,...,mp) =) + Zémwgfm +o(|'zx[?) > 0
o, T
in a neighborhood of p, where 'z) = (z1,...,Zx,...,2,). Here, [05,] is the
n x n Hessian matrix at p. Since R(p") = p, one point, every point except
K (") converges to p. Let my = Tpoh1{2) be the tangent space at py =
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hi(g). Choose an n-simplex Eg at pp with vertices {eS,...,e%} satisfying (a)
e & m. (b) e € mg for £ # X (c) Eg N K(p") = 0. Since K(p") N
Ey = 0, we learn that lim,_o ¢y (Eo) C R(¢") = p uniformly. Without loss
of generality, we may assume that A = 1. Let ¢,(po) = ¢ = (¢¥,...,c%).
Now, define affine coordinate changes ®,,, ¥, R,,I',, L, and follow the proof of
Theorem 3. To analyze the limit equation after applying the affine coordinate
changes above, consider the coefficients of quadratic terms #x2,,’s with 1 <

k,m < n. For notation, put (r51s-.-,7r51) = (B%,...,B%). They are of the form
2o.r=2007 255 Recall the definition of (rfy,...,%,) = (®.,)(e3). In our
¢"-related affine coordinate v, this can be written as, with Veg = (q1,- -+, Gn, 1)

and vp, = (p1,...,Pn, 1),

e = a 'U62/a;+1 Ve — @ “Vpo/An41 " Upo
n+1 n+1
SN SN\
a Zﬁ% a Zﬁpu
_ u=1 _ u=1 .
T a4l n+1 (2 Sts ’I'l)
ZGZHU% Za;HuPu
u=1 u=1
Since ¢, — ¢" as v — oo for a normalized {¢,}, ay,,, — (0,...,0,1). If
{al’} = {T;M}7
r;krl;m @ T‘z’{m N
2 7 v
@ g Tip
n+l n+l ,,
a a
a’ ;: (vu — pu) a’ ﬁ'( w = Pu)
lim —¥=t lim —%=L
v—oo Nl v v—oo nHl oy
U g~ U o~
a” L,,(Uu — Pu) a’ J,, (Vu — Pu)
a a
u=1 u=1
n+l n+l
'
Z aa:. (v — pu) Z L,,u(vu — Pu)
= lim 2= + lim 2=
v—soon+l o vooontl _p
Ju (o~ Gju -
Z F(vu = Pu) Z av (Vu — Pu)
u=1 u=1
n n
Zfou (Vu = Pu) Zg‘ru('u; — Pu)
_ u=1 u=1
- n ) ’
Zgju(f)’u _pu) Z&]u(ﬁu _pu)
u=1 u=1
where ves = (v1,...,Vn,1), Veo = (v,...,v},1), and Veg = (U1,...,7n, 1) are

representative vectors of eg, e7, and ej,, respectively. From our choice of {a”},
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we have

Z 5071 (vu - pu) Z STH (Uu

u=1 .

Z é'ju (rDu Z gju % u
u=1

Notice that (v1 —p1,..., 00 —D»), (Vi =p1,. .., v, —pn), and (F1~p1, .. ., Tn—Dn)
are vectors corresponding to the edges of the simplex Fy at pg in afline space,

ie., {eS —po,e3 —po,..., €2 —po}, which is linearly independent in R™. Hence
this is a basis of R™. Write the basis as {wy,...,w,}. Consequently, one gets
1
D D
T & o 3o 626 )

= (EZD . 22501 fp wk)(ff 'wm)

= g Blwk,wn),
GRS
where B(-,-) is a symmetric bilinear form defined by the (n + 1) x (n + 1)
matrix B = *MnHyMn = *| vll00-1[65;]. Since a bilinear form is uniquely
determined by B(ws, wy,)’s, where {wy, ..., w, } is a basis, we have (f’-’-wu) #0

and there must exist a coefficient > __, 85r M # 0 by the assumption
"M HpyMn # 0 on R™ and 6, = 0 = §, for 1 g o, T < n. O

Remark. Let © be an affine domain defined by {(z,y) € R? | y > z3}. Then

{3 3]

has a subsequence whose limit ¢ satisfies R(p) = {0}. As we can see in this
example, which was advised me by K. H. Jo, ¢ and Hess,(p) does not satisfy
the condition that ‘M » H,M_» # 0 on R? in Theorem 5.

Let us define a conical limit point p of the boundary of a domain as follows.
There is a point ¢ € RP™ and an h-normalized sequence of automorphism
group of the given domain such that lim, ... (q) = ¢"(¢) = p and for all
sufficiently large v, ¢, (q) is contained in a cone C, which doesn’t intersect the

degenerate directions at p. The following corollary is an easy application of
Theorem 5.

Corollary 2. Let {h(Q),G"} be an h-normalization of Q of dimension n and
{ov} C Aut(Q). Suppose that 9 is C? in a neighborhood of ¢ € AQ with
R(p) = {q}. If p = ho(q) = U(eny1) is a conical point, then Q is projectively
equivalent to one of Q(ba, ..., by).
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In general, we do not know if the range of singular map consists of exactly
one point when there is a boundary accumulation point. One can give similar
theorems and proofs even for domains and sequences of automorphisms having
dimension of range > 1. There is a special C? boundary, flat boundary, in
which tM¢thMLPh = 0. So, we prove that case separately.

Theorem 6. Let Q be an n-dimensional projective domain with {¢, } C Aut(Q).
If 09 is flat in a tubular neighborhood of R(p) in an affine chart, then €1 is
projectively equivalent to Qx(0,...,0).

Proof. If 3Q C K(p), then dim K(¢) = n — 1 = dimdQ and 9Q = K(p),
which clearly implies € is projectively equivalent to @x(0,...,0). Suppose
that 9Q — K(p) # 0. If pp € 90 — K(p) # 0, p = limy—ootpu (P0) = @(po) €
R(p) N 6Q. From the assumption, 2 is defined by, without loss of generality,

with A =1,
plz)=21>0
in the tubular neighborhood of R(y). Define ®,, as before. Let BY = |, (e9)| =

\/BY% + -4 B4% and for each v, define

By
U= oy
\I,I/z lﬁu
uz=——f,y1+yg £=2,...,n.
B

Define €, = |a,| > 0 and R,,T,, L, as Theorem 3 to complete the proof. [J

Remark. (i) If one assumes, in theorem 6, that there exists ¢ € Q — K(¢)
satisfying lim ¢,(q) = p € 8, then R(p) cannot be transversal to 92, for

if one takes an open neighborhood N, C € of ¢ which does not meet the
kernel K (), then lim,_o ¢, (N;) = ¢(Ng) is an open subset of the range
R{p) containing g as an interior point.

(ii) If Q2 is hyperbolic and Aut(f2) contains a subgroup G which acts syndetically
on 2, then, for any boundary point p € 91, there exist ¢ € € and a sequence
{¢v} C G such that VILIEO v,(q) = pand K(p)NQ = 0. Therefore, R(p) cannot

be transversal to 9 at p for such domain 2 and G.
(iii) Consider the following affine domain € defined by @ = {(z,y,2) € R3 |
z >0} and

10 0
S={p,=1]01 (1) In=1,2,...3 CAut(Q).

00 =

n

Clearly, for ¢ = lim ¢,, one has R(p) = {(z,4,0) € R | z,y € R}. Let

D C R(yp) be any 2-dimensional bounded domain containing 0. Then Dx(0,00)
is preserved by S but D x (0, 00) is not projectively equivalent to Q(0,...,0).
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This example shows that one needs to take a tubular neighborhood of R{yp) in
Theorem 6.

5.3. Cayley surface

This example shows why the direction of convergence is important in qua-
dratic domain while it’s not necessary for ellipsoid. Let §2 be the affine domain
defined by {(z,y,2z) € R® | 2 > zy — $2}. Q is homogeneous by Aut(Q). A
sequence of automorphisms

1
= 0 0
pr=10 — (1)
0 0 —

whose limit ¢ = lim, ¢, satisfies R(p) = {0}. Q and {p, } are h-normalized
with h = (id,id). By a simple computation,

0 10

H, = , Mg =

OO -

0 0
1 00 0 0|,
0 00 0 0
where p = 0. So, thothM(ph = 0 which shows that the hypothesis of Theo-
rem 5 does not hold for 2, {, }. As a quadratic form on the tangent space R®
at p, H, has a degenerate set consisting of two circles which is Z(H,) N S™ 1.
Every point except infinite points converges to the boundary accumulation

point along these degenerate directions by the sequence {®,}. The affine au-
tomorphism group Aut({2) consists of

c 0 0 a
ac ¢ 0 b
be ac® ¢ ab—id®
0 0 0 1

for a,b,c € R,c > 0. Since Aut(£2) acts transitively, we should find a sequences
{p.} of points in Q converging to p away from these degenerate directions by a
sequence of automorphisms {¢, } before h-normalization. Theorem 5 says that
after h-normalizing (€2, {¢, }), the corresponding sequence {p, } should converge
along its degenerate directions of the corresponding Hessian at p. If we choose
a sequence of automorphism A, (an, by, c,) € Aut(Q) with ayn,bp,c, — 0 for
n=123,... A, = S;'D,S, = PnD~nQn, where S,,’s column vectors are
eigenvectors of A,, P,,Q, € O(4) and D, D, are diagonal matrices. Note
that S, — Id so we see rank of lim,, D, =rank of lim,, D,. Furthermore,

1 0 0
M,=|00 0
00 0
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This implies that the condition of Theorem 5 is not satisfied for the sequence
An. We get the following statement obtained from this arguments.

Corollary 3. Let Q C RP™ be a domain whose boundary is C? and not qua-
dratic. If {.} is a sequence of automorphisms whose limit has a range of
one point, then every point in an open dense subset converges to the boundary
accumulation point q along degenerate directions at q.

Finally, we can apply scaling method to get typical bounded domains even if
we do not know whether they are bounded or not since scaling method enables
us identify domains from local data around boundary points [18].
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