DOI QR코드

DOI QR Code

Motion Imitation Learning and Real-time Movement Generation of Humanoid Using Evolutionary Algorithm

진화 알고리즘을 사용한 인간형 로봇의 동작 모방 학습 및 실시간 동작 생성

  • 박가람 (고려대학교 기계공학과, 한국과학기술연구원(KIST)) ;
  • 나성권 (한국과학기술연구원(KIST) 인지로봇연구단) ;
  • 김창환 (한국과학기술연구원(KIST) 인지로봇연구단) ;
  • 송재복 (고려대학교 기계공학과)
  • Published : 2008.10.01

Abstract

This paper presents a framework to generate human-like movements of a humanoid in real time using the movement primitive database of a human. The framework consists of two processes: 1) the offline motion imitation learning based on an Evolutionary Algorithm and 2) the online motion generation of a humanoid using the database updated bγ the motion imitation teaming. For the offline process, the initial database contains the kinetic characteristics of a human, since it is full of human's captured motions. The database then develops through the proposed framework of motion teaming based on an Evolutionary Algorithm, having the kinetic characteristics of a humanoid in aspect of minimal torque or joint jerk. The humanoid generates human-like movements far a given purpose in real time by linearly interpolating the primitive motions in the developed database. The movement of catching a ball was examined in simulation.

Keywords

References

  1. J. M. Hollerbach and T. Flash, 'Dynamic interactions between limb segments during planar arm movement,' Biological Cybernetics, vol. 44, pp. 67-77, 1982 https://doi.org/10.1007/BF00353957
  2. M. Raibert and B. Horn, 'A model for sensorimotor control and learning,' Biological Cybernetics, vol. 29, pp. 29-36, 1978 https://doi.org/10.1007/BF00365233
  3. F. A. Mussa-Ivaldi, S. F. Giszter, and E. Bizzi, 'Linear combinations of primitives in vertebrate motor control,' Proc. of the National Academy of Sciences of the United States of America, 91, pp. 7534-7538, 1994
  4. F. A. Mussa-Ivaldi FA and E. Bizzi, 'Motor learning through the combination of primitive,' Philosophical Trans. of the Royal Society of London, Series B, 355:1755-1769, 2000 https://doi.org/10.1098/rstb.2000.0733
  5. M. M. Williamson, 'Postural primitives: interactive behavior for a humanoid robot arm,' In Proc. of the Fourth International Conference on Simulation of Adaptive Behavior (SAB-96), 1996
  6. J. E. Bobrow, B. Martin, G. Sohl, E. C. Wang, F. C. Park, and J. Kim, 'Optimal robot motions for physical criteria,' J. of Robotic Systems, vol. 18, no. 12, pp. 785-795, 2001 https://doi.org/10.1002/rob.8116
  7. R. M. Alexander, 'A minimum energy cost hypothesis for human arm trajectories,' Biol. Cybern., vol. 76, pp. 97-105, 1997 https://doi.org/10.1007/s004220050324
  8. G. J. Garvin, M. Zefran, E. A. Henis, and V. Kumarm, 'Two-arm trajectory planning in a manipulation task,' Biol. Cybern., vol. 76, pp. 53-62, 1997 https://doi.org/10.1007/s004220050320
  9. Y. Uno, M. Kawato, & R. Suzuki, 'Formation and control of optimal trajectory in human arm movement -minimum torquechange model,' Biol. Cybernetics, vol. 61, pp. 89-101, 1989
  10. E. Nakano, H. Imamizu, R. Osu, Y. Uno, H. Gomi, T. Yoshioka, & M, Kawato, 'Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model,' Journal of Neurophysiology, vol. 81 (5), pp. 2140-2155, 1999 https://doi.org/10.1152/jn.1999.81.5.2140
  11. Y. Wada, Y. Kaneko, E. Nakano, R. Osu, and M. Kawato, 'Quantitative examinations for multi joint arm trajectory planning - using a robust calculation algorithm of the inimum commanded torque change trajectory,' Neural Networks, vol. 14, pp. 381-393, 2001 https://doi.org/10.1016/S0893-6080(01)00026-0
  12. R. A. Schmidt, Motor Control and Learning: A Behavioral Emphasis. 2nd ed. champaign, IL: Human Kinetics, 1988
  13. S. Schaal, 'Learning robot control, in the handbook of brain theory and neural networks, 2nd ed,' M. A. Arbib, Ed. MIT Press, pp. 983-987, 2002
  14. S. Schaal, 'Is imitation learning the route to humanoid robots?,' Trends in Cognitive Sciences, 3, pp. 233-242, 1999 https://doi.org/10.1016/S1364-6613(99)01327-3
  15. A. Fod, M. J. Mataric, and O. C. Jenkins, 'Automated derivation of Primitives for movement classification,' Autonomous Robots, vol. 12, no. 1, pp. 39-54, 2002 https://doi.org/10.1023/A:1013254724861
  16. B. Lim, S. Ra, and F. C. Park, 'Movement primitives, principal component analysis, and the efficient generation of natural motions,' in Proc. 2005 IEEE Int. Conf. Intelligent Robots and Systems, pp. 4630-4635, 2005
  17. J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and M. Kawato, 'Learning from demonstration and adaptation of biped locomotion,' Robotics and Autonomous System, vol. 47, pp. 79-91, 2004 https://doi.org/10.1016/j.robot.2004.03.003
  18. C. Kim, D. kim, and Y. Oh, 'Solving an inverse kinematics problem for a humanoid robot's imitation of human motions using optimization,' in Proc. Of Int. Conf. on Informatics in Control, Automation and Robotics, pp. 85-92, 2005
  19. T. D. Sanger, 'Human arm movements described by a lowdimensional superposition of principal components,' The J. of Neuroscience, vol. 20, no. 3, pp. 1066-1072, 2000 https://doi.org/10.1523/JNEUROSCI.20-03-01066.2000
  20. L. I. Smith, 'A tutorial on principal components analysis,' http://csnet.otago.ac.nz /cosc453/, 2002
  21. S. Lee, J. Kim, F. C. Park, M. Kim, and J. E. Bobrow, 'Newtontype algorithms for dynamics-based robot motion optimization,' IEEE Trans. Robotics, vol. 21, no. 4, pp. 657-667, 2005 https://doi.org/10.1109/TRO.2004.842336
  22. G. R. Tack, B. S. Lee, S. C. Chung, J. H. Yi, G. M. Eom, C. H. Kim, and J. S. Choi, 'Effect of shoe and walking speed on the smoothness of movement during walking,' Int. Conf. Mechanics in Medicine and Biology, pp. 354-357, 2006
  23. A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, Springer, pp. 15-24, 2003