DOI QR코드

DOI QR Code

소성지수에 따른 점성토의 압밀특성에 관한 연구

A study on the Consolidation Characteristic of Cohesive Soil by Plastic Index

  • 발행 : 2008.08.31

초록

본 연구는 군산 새만금지역의 점성토를 소성지수 15%, 30%, 45%, 60%가 되도록 벤초나이트를 첨가한 인공의 시료를 이용하여 하중재하기간을 1일, 2일, 4일, 8일 등으로 달리한 표준압밀시험을 실시하였다. 그리고 인천, 광양, 울산지역의 불교란 시료에 대한 압밀시험도 같이 수행하여 소성지수와 압밀하중재하기간이 2차 압밀에 어떤 영향이 있는지를 밝혔다. 그리고 각 소성지수에 따른 하중과 침하특성, 압밀계수특성, 압축지수 및 2차 압축지수특성, 간극수압특성을 밝히고 압축지수, 압밀계수, 2차 압축지수 등을 소성지수, 하중에 관하여 정식화하였다. 또한 정식화한 식을 이용한 1차 및 2차 압밀침하량 예측결과와 탄소성 구성모델인 수정 Cam-Clay모델과 탄 점소성 모델인 Sekiguchi모델을 이용한 예측결과를 모형시험 결과와 같이 비교하였다. 그 결과, 2차 압밀특성을 고려한 Sekiguchi모델이 매우 정도 높게 결과를 예측할 수 있음을 알 수 있었다.

The standard consolidation tests using the incremental loading technique test (IL) were performed on remolded normal consolidation and undisturbed clay samples to find out the effects of plastic index and loading period on consolidation in this study. The remolded samples used were prepared by mixing Gunsan-Samangum clay with bentonite so that they may have plasticity indexes of 15, 30, 45, and 60%, respectively. The undisturbed clay samples were collected from Inchon, Kwangyang, and Uoolsan. The samples were tested at the condition of 4 different loading periods (1, 2, 4, and 8 days). Settlement, coefficient of consolidation, compression index, secondary compression index, and pore water pressure characteristics were investigated from the plastic index and loading period aspects, and the compression index, coefficient of consolidation, and secondary compression index were formulated in terms of the plastic index and loading. To verify the applicability of proposed equations, the settlements obtained from Terzaghi's theory, modified Cam-Clay model (elasto-plastic model), and the Sekiguchi model (elasto-viscoplastic mode) were compared with the test results. The comparison indicates that the Sekiguchi model incorporating the secondary consolidation characteristic well predicts the results.

키워드

참고문헌

  1. 김규선, 임형덕, 이우진 (1999), "실내압밀시험에 의한 남해안 해성점토의 $C_{\alpha}/C_{c}$ ", 한국지반공학회지, 제15권, 제6호, pp.87-96
  2. 박병기, 정진섭, 강병선 (1985), "복합연약지반의 변형해석에 관한 수치해석", 대한토목학회지, 제1권, 제2호, pp.27-39
  3. 吉國洋(1972), "三次元圧密の基理論", 土木學會論文集, 第201 号, pp.89
  4. 寺田邦雄(2000), "二次圧密を考慮した圧密沈下計算方法の提案(2)", 第35回地盤工学回研究発表会,発表論文集, pp.729-730
  5. 日本地盤工学会(1990), 土質試験の方法と解説, pp.289-308
  6. Biot, M. A. (1941), "General Theory of Three-dimensional Consolidation", Journal Appl. Phys., pp.12-155
  7. Crawford, C. B. (1964), "Interpretation of the Consolidation Test", Journal of the Soil Mechanics and Foundations Division, ASCE,Vol.90. No.SM5, pp.87-102
  8. Mesri, G. and Codlewski, P. M. (1977), "Time and stress compressibility interrelationship", Journal of Goetech. Eng. Div., ASCE 103, No.GT5, pp.417-430
  9. Mesri, G. and Castro, A. (1987), "The Concept and During Secondary Compression:, Journal of Geotechnical Engineering", ASCE, Vol. 113, No.GT3, pp.230-247
  10. Murayama, S. and T. Shibata (1958), "Rheological Properties of Clays", Proc. 5th Int. Conf. Soil mech., pp.1-269
  11. Ohta, H., S. Yoshitani and S. Hata (1975), "Anistropic Stress- Strain relationship of Clay and its Application to Finite Element Analysis", Soil and Foundations, Vol.15, No.4, pp.61-78
  12. Schiffman, R. L. and Gibson. R. E. (1964), "Consolidation of Non-homogeneous Clay Layers", Proc. ASCE. 90-SM. 5-1
  13. Sekiguchi, H., and Ohta, H.C. (1977), "Induced Anisotropy and Time Dependency in Clay", Proc. Speciality Session 9, 9th ICSMFE, Tokyo.pp.229-238
  14. Yasuhara, K., Yamanouchi, T. and Ue, S. (1983), "Secondary Compression of Clay in Consolidation and Undrained Shear Tsets", Proc. Int. Symp. Recent Development in Lab. & Field Tests and Analysis of Geotechnical Problems, pp.361-374
  15. Olson, R. E. (1986), "State of the Art: Consolidation Testing", Proceeding of Consolidation of soils: Testing and Evaluation, ASTM STP 892, pp.7-70