References
- ALWAN, M., DALAL, S., MACK, D., KELL, S., TURNER, B., LEACHTENAUER, et al. 2006. Impact of monitoring technology in assisted living: outcome pilot. IEEE Transaction on Information Technology in BioMedicine, 10(1), 192-198. https://doi.org/10.1109/TITB.2005.855552
- ATKINSON, H. H., CESARI, M., KRITCHEVSKY, S. B., PENNINX, B. W. J. H., FRIED, L. P., GURALNIK, J. M., et al. 2005. Predictors of combined cognitive and physical decline. Journal of the American Geriatrics Society, 53(7), 1197-1202. https://doi.org/10.1111/j.1532-5415.2005.53362.x
- BLACHER, J., STAESSEN, J. A., GIRERD, X., GASOWSKI, J., TJIJS, L., LIU, L., et al. 2000. Pulse pressure not mean pressure determines cardiovascular risk in older hypertensive patients. Archives of Internal Medicine, 160(8), 1085-1089. https://doi.org/10.1001/archinte.160.8.1085
- CHAN, M., CAMPO, E., ESTEVE, D. 2005. Assesment of activity of elderly people using a home monitoring system. International Journal of Rehabilitation Research 28(1), 69-76. https://doi.org/10.1097/00004356-200503000-00010
- CHEN, D., YANG, J., MALKIN, R., WACTLAR, H. D. 2007. Detecting social interactions of the elderly in a nursing home environment. ACM Transactions on Multimedia Computing, Communications and Applications, 3(1), 1-22.
- CUDDIHY, P., WEISENBERG, J., GRAICHEN, C., AND GANESH, M. 2007. Algorithm to automatically detect abnormally long periods of inactivity in a home. In Proceedings of the 1st ACM SIGMOBILE international Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments. New York: ACM Press. 89-94.
- DAVIS, M. G., FOX, K. R. 2007. Physical activity patterns assessed by accelerometry in older people. European Journal of Applied Physiology, 100(5), 581-589. https://doi.org/10.1007/s00421-006-0320-8
- EAGLE, N., PENTLAND, A. 2006. Reality mining: sensing complex social systems. Personal and Ubiquitous Computing, 10(4), 255-268. https://doi.org/10.1007/s00779-005-0046-3
- FOGARTY, J., AU, C., HUDSON, S. E. 2006. Sensing from the basement: a feasibility study of unobtrusive and low-cost home activity recognition. In Proceedings of the 19th Annual ACM Symposium on User interface Software and Technology. New York: ACM Press. 91-100.
- FRANKLIN, S. S., LARSON, M. G., KHAN, S. A., WONG, N. D., LEIP, E. P., KANNEL, W. B., et al. 2001. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham heart study. Circulation, 103(9), 1245-1249. https://doi.org/10.1161/01.CIR.103.9.1245
- GIL, N. M., HINE, N. A., ARNOTT, J. L., HANSON, J., CURRY, R. G., AMARAL, T., et al. 2007. Data visualization and data mining technology for supporting care for older people. Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility. New York: ACM Press. 139-146.
- GLYNN, R. J., CHAE, C. U., GURALNIK, J. M., TAYLOR, J. O., HENNEKENS, C. H. 2000. Pulse pressure and mortality in older people. Archives of Internal Medicine, 160(18), 2765-2772. https://doi.org/10.1001/archinte.160.18.2765
- HAN, J., KAMBER, M. 2006. Data mining: concepts and techniques. San Francisco: Morgan Kaufmann Publishers.
- HAYES, T. L., PAVEL, M., KAYE, J. A. 2004. An unobtrusive in-home monitoring system for detection of key motor changes preceding cognitive decline. Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco. 2480-2483.
- HOLLAND, P. W., WELSCH, R. E. 1977. Robust regression using iteratively reweighted least squares. Communications in Statistics Theory and Methods, 6(9), 813-827. https://doi.org/10.1080/03610927708827533
- LEE, M. L. T., ROSNER, B. A., WEISS, S. T. 1999. Relationship of blood pressure to cardiovascular death: the effects of pulse pressure in the elderly. Annals of Epidemiology, 9(22), 101-107. https://doi.org/10.1016/S1047-2797(98)00034-9
- MITCHELL, G. F., VASAN, R. S., KEYES, M. J., PARISE, H., WANG, T. J., LARSON, M. G., et al. 2007. Pulse pressure and risk of new-onset atrial fibrillation. Journal of the American Medical Association, 297(7), 709-715. https://doi.org/10.1001/jama.297.7.709
- OTTO, C. A., JOVANOV, E., MILENKOVIC, A. 2006. A WBAN-based system for health monitoring at home. Proceedings of the 3rd IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors MIT. Boston. 20-23.
- PETERS, R., MARERO, C. M., PINTO, E., BECKETT, N. 2007. Hypertension in the very elderly. Aging Health, 3(4), 517-525. https://doi.org/10.2217/1745509X.3.4.517
- RANTZ, M. J., MAREK, K. D., AUD MA, JOHNSON RA, OTTO D., PORTER D. 2005. TigerPlace: A New Future for Older Adults. J. of Nursing Care Quality, 20(1), 1-4. https://doi.org/10.1097/00001786-200501000-00001
- ROMERO, N., MARKOPOULOS, P., BAREN, J., RUYTER, B., IJSSELSTEIJN, W., FARSCHCHIAN, B. 2007. Connecting the family with awareness systems. Personal and Ubiquitous Computing, 11(4), 299-312. https://doi.org/10.1007/s00779-006-0089-0
- ROWAN, J., MYNATT, E. D. 2005. Digital Family Portrait field trial: support for Aging in Place. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press. 521-530.
- RUYTER, B., PELGRIM, E. 2007. Ambient assisted-living research in CareLab. Interactions, 14(4), 30-33.
- SAFAR, M. E., LAJEMI, M., RUDNICHI, A., ASMAR, R., BENETOS, A. 2004. Angiotensin-converting enzyme D/I gene polymorphism and age-realted changes in pulse pressure in subjects with hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(4), 782-786. https://doi.org/10.1161/01.ATV.0000119354.41615.33
- SCHULTZ-LARSEN, K., AVLUND, K. 2007. Tiredness in daily activities: a subjective measure for the identification of frailty among non-disabled community-living older adults. Archives of Gerontology and Geriatrics, 44, 83-93.
- SHIEH, J. S., CHUANG, C. S., WANG, X., KUO, P. Y. 2006. Remote monitoring of mobility changes of the elderly at home using frequency rank order statistics. Journal of Medical and Biological Engineering, 26(2), 81-88.
- SIXSMITH, A., JOHNSON, N. 2004. A smart sensor to detect the falls of the elderly. IEEE Pervasive Computing, 3(2), 42-47.
- SWAMINATHAN, R. V., ALEXANDER, K. P. 2006. Pulse pressure and vascular risk in the elderly: associations and clinical implications. The American Journal of Geriatric Cardiology, 15(4), 226-232. https://doi.org/10.1111/j.1076-7460.2006.04774.x
- TAPIA, E. M., INTILLE, S. S., LARSON, K. 2004. Activity recognition in the home using simple and ubiquitous sensors. Proceedings of the Second International Conference on Pervasive Computing. Springer. 158-175.
- TEAW, E., HOU, G., GOUZMAN, M., TANG, K. W., KESLUK, A., KANE, M., et al. 2005. A wireless health monitoring system. Proceedings of the 2005 IEEE InternationalConference on Information Acquisition. 247-252.
- VIRONE, G., NOURY, N., DEMONGEOT, J. 2002. A system for automatic measurement of circadian activity deviations in telemedicine. IEEE Transactions on Biomedical Engineering, 49(12), 1463-1469. https://doi.org/10.1109/TBME.2002.805452
- VIRONE, G., WOOD, A., SELAVO, L., CAO, Q., FANG, L., DOAN, T., et al. 2006. An assisted living oriented information system based on a residential wireless sensor network. Proceedings of the 1st Distributed Diagnosis and Home Healthcare (D2H2) Conference. Arlington, VA. 95-100.
- WILLIAMS, A., GANESAN, D., HANSON, A. 2007. Aging in place: fall detection and localization in a distributed smart camera network. Proceedings of the 15th International Conference on Multimedia. New York: ACM Press. 892-901.
- YANG, G. Z., LO, B., WANG, J., RANS, M., THIEMJARUS, S., NG, J. 2004. From sensor networks to behavior profiling: a homecare perspective of intelligent buildings. Proceeding of the IEE Seminar for Intelligent Buildings, 1-7.
Cited by
- Mobile multimedia sensor networks: architecture and routing vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-1499-2011-159
- EEM: evolutionary ensembles model for activity recognition in Smart Homes vol.38, pp.1, 2013, https://doi.org/10.1007/s10489-012-0359-7
- A Multidimensional Time-Series Similarity Measure With Applications to Eldercare Monitoring vol.20, pp.3, 2016, https://doi.org/10.1109/JBHI.2015.2424711
- A Scalable and Energy-Efficient Context Monitoring Framework for Mobile Personal Sensor Networks vol.9, pp.5, 2010, https://doi.org/10.1109/TMC.2009.154