DOI QR코드

DOI QR Code

수중에서 사용가능한 굴착공 벽면거칠기 측정 시스템(BKS-LRPS)의 굴착공 내 혼탁도 보정에 관한 연구

Turbidity Calibration of Borehole Roughness Measurement System (BKS-LRPS) Usable in Water

  • 발행 : 2008.10.31

초록

암반에 근입된 현장타설말뚝의 주면마찰력은 암석의 일축압축강도 외에 굴착면의 거칠기, 암반의 재료특성, 초기 수직응력, 말뚝의 직경, 암반의 절리 및 풍화도 등에 크게 영향을 받는 것으로 알려져 있다. 특히 주면마찰력에 영향을 미치는 인자 중 굴착공의 거칠기는 암반의 종류, 말뚝의 직경, 그리고 말뚝의 시공법에 따른 영향이 큰 것으로 알려져 있다. 암반의 굴착공 벽면거칠기 측정장치인 Backyoung-Kyungsung Laser Roughness Profiling System(이하 BKS-LRPS라 칭함)의 혼탁도에 대한유효측정영역 및 측정 가능 여부를 결정하기 위하여 실내모형실험을 수행하였으며, 여기서 혼탁($T_b$)와 BKS-LRPS의 유효 측정거리(Effective Measurement Distances(EMD), mm)의 관계식은 $EMD=1149.2{\times}T_{b}^{-0.64}$로 구할 수 있었다.

Based on recent studies, the side resistance of rock socketed drilled shafts was affected by unconfined compressive strength of rock, socket roughness, rock types and joints, and initial normal stress. Especially, the socket roughness was affected by rock types and joints, drilling methods, and diameters of pile. In this study, a new roughness measurement system (BKS-LRPS, Backyoung-KyungSung Laser Roughness Profiling System) usable in water was developed. Based on the laboratory model tests, an EMD (Effective Measurement Distances) according to various turbidity was proposed as $EMD=1149.2{\times}T_{b}^{-0.64}$.

키워드

참고문헌

  1. 박봉근 (2007), 'BKS-LRPS(Backyoung-KyungSung Laser Roughness Profiling System)의 개발 및 검증에 관한 연구', 경성대학교 박사학위논문
  2. Collingwood, B. (2000), 'The Effects of Construction Practices on the Performance of Rock Socket Bored Piles', Ph. D. Thesis, Department of Civil Engineering, Monash University, Clayton, Vic., Australia
  3. David R. Wiese (1989), 'Laser Triangulation Sensors:A Good Choice for High Speed Inspection', Chilton's, I&CS, Vol. 62, pp.27-29
  4. Dwulet, R. J. (1995), 'Laser Triangulation Expands Measurement Options', Design News, Mar 27, pp.114
  5. Fumio Murakami Laboratory. (1994), 'Accuracy Assessement of a Laser Triangulation Sensor', IMTC '94, 10-12, May
  6. Horvath, R. G., Kenney, T. C., and Kozicki, P. (1983), 'Methods of Improving the Performance of Drilled Piers in Weak Rock', Canadian Geotechnical Journal, Vol. 20, pp.758-772 https://doi.org/10.1139/t83-081
  7. Liang, R. (2002), 'Development of A Laser Triangulation Distance Measurement Device and Its Application to Borehole Roughness Detection', MSEE Thesis, Department of Electrical Engineering, University of Houston, Texas
  8. Nam, M. S. (2004), 'Improved Design for Drilled Shafts in Rock', Ph. D. Thesis, Department of Civil and Environmental Engineering, University of Houston, Texas. Department of Electrical Engineering, University of Houston, Texas
  9. O'Neill, M. W., Townsend, F. C., Hassan, K. M., Buller, A., and Chan, P. S. (1996), 'Load Transfer for Drilled Shafts in Intermediate Geomaterials.' FHWA Publication No. FHWA-RD-95-172, Department of Transportation, Federal Highway Adminstration, Research and Development, McLean, VA
  10. Seidel, J. P., and Collingwood B. (2001), 'A New Socket Roughness Factor for Prediction of Rock Socket Shaft Resistance', Canadian Geotechnical Journal, Vol. 38. February pp.138-153 https://doi.org/10.1139/cgj-38-1-138