Voronoi 절리모델에 의한 터널 주변 굴착손상권(EDZ)의 해석 사례

Numerical Evaluation of Excavation Damage Zone Around Tunnels by Using Voronoi Joint Models

  • 박의섭 (한국지질자원연구원 지구환경연구본부 지하공간환경연구실) ;
  • ;
  • 신중호 (한국지질자원연구원 정책협력부)
  • 발행 : 2008.10.31

초록

굴착손상권의 특성 및 범위를 규명하는 것은 방사성 폐기물의 이동 및 확산의 위험을 최소화하는 지하공동의 기밀에 영향을 받는 방사성폐기물 처분사업에선 중요하다. 캐나다 AECL의 URL에선 터널기밀시험(TSX)이 수행되었고, 굴착손상권(EDZ)의 발달 가능성을 최소화하기 위하여 응력장을 고려하여 터널 형태 및 방향을 선택하였다. EDZ의 특성 및 범위는 방사상의 시추공내에서의 탄성파 속도와 투수율 측정을 통하여 파악되었다. 이 결과는 EDZ의 범위를 추정하는 본 연구의 모델링작업에 사용되었다. 이를 위하여 UDEC 코드내에 손상모델을 형성하고, 실내실험 물성에 맞추었다. 이 모델은 TSX 터널 주변의 균열 개시와 성장범위를 예측하는데 사용되었고, 해석결과는 실제 측정된 손상과 비교되었다. 수치모델내 손상권의 발달은 현장 측정결과의 잘 일치하는 것으로 나타났다.

Quantifying the extent and characteristics of the excavation damage zone(EDZ) is important for the nuclear waste industry which relies on the sealing of underground openings to minimize the risk for radionuclide transport. At AECL's Underground Research Laboratory(URL) the Tunnel Sealing Experiment(TSX) was conducted and the tunnel geometry and orientation relative to the stress field had been selected to minimize the potential for the development of an EDZ. The extent and characteristics of the EDZ was measured using velocity profiling and permeability measurements in radial boreholes. The results from this EDZ characterization are used in this paper to evaluate a modeling fir estimating the extent of the EDZ. The methodology used a damage model formulated in the Universal Distinct Element Code and calibrated to laboratory properties. This model was then used to predict the extent of crack initiation and growth around the TSX tunnel and the results compared to the measured damage. The development of the damage zone in the numerical model was found to be in good agreement with the field measurements.

키워드

참고문헌

  1. Brady, B.H.G. and E. Brown, 1985, Rock mechanics for underground mining, George Allen & Unwin. 527p
  2. CANMET, 1992, Uniaxial and triaxial compression tests on URL rock samples from boreholes 207-045-GC3 and 209 -069-PH3. Canada Center for Mineral and Energy Technology. Division report. MRL92-025 (TR)
  3. Cundall, P.A., 1976, Explicit finite difference methods in geotechnics. In Proc. the EFconference on numerical methods in geomechanics. Virginia. 11: 132-150
  4. Hoek, E. and E. Brown, 1997, Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci., 34(8):1165- 1186 https://doi.org/10.1016/S0148-9062(97)00305-7
  5. Itasca Consulting Group Inc., 2000, UDEC-Universal Distinct Element Code in 2Dimensions, Minneapolis: Itasca
  6. Martin, C.D., 2006, Quantifying the ezxcavation damaged zone (EDZ) in a fractured rock mass, University of Alberta Progress report (Year 1) to KIGAM, Korea. Issued as KIGAM Report No. JCA2003011-2006(2)
  7. Martino, J. and N. Chandler, 2004, Excavation-induced damage studies at the underground research laboratory. Int. J. Rock Mech. Min. Sci., 41(8):1413-1426 https://doi.org/10.1016/j.ijrmms.2004.09.010
  8. Maxwell, S., R. Young and R. Read, 1998, A micro-velocity tool to assess the excavation damage zone. Int. J. Rock Mech. Min. Sci., 35(2):235-247 https://doi.org/10.1016/S0148-9062(97)00328-8
  9. Potyondy, D. and P. Cundall, 2004. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci., 41:1329-1364 https://doi.org/10.1016/j.ijrmms.2004.09.011
  10. Rocscience Inc., 2005, Phase2 v6.0 - a two-dimensional finite element analysis program
  11. Tsang, C. et al., 2005, Geohydromechanical processes in the Excavation Damaged Zone in crystalline rock, rock salt, and indurated and plastic clays - in the context of radioactive waste disposal Int. J. Rock Mech. Min. Sci, 42: 109-125 https://doi.org/10.1016/j.ijrmms.2004.08.003