Adhesion of Escherichia coli to Quartz and Iron-coated Sands in the Presence of Phosphate

인산염의 존재 하에서 Escherichia coli의 석영 및 철피복 모래에의 부착

  • Park, Seong-Jik (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Lee, Chang-Gu (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Hyon-Chong (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Han, Yong-Un (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Song-Bae (Environmental Biocolloid Engineering Laboratory, Seoul National University)
  • 박성직 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 이창구 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 김현정 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 한용운 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 김성배 (서울대학교 환경바이오콜로이드공학연구실)
  • Published : 2008.06.30

Abstract

The aim of this study was to investigate the influence of phosphate on the adhesion of Escherichia coli to porous media. Column experiments were performed to examine the effect of phosphate on bacterial adhesion to quartz sand and iron-coated sand. Results showed that bacterial mass recovery in quartz sand decreased from 74.5 to 35.4% as phosphate concentration increased from 0 to 16 mg/L. This indicated that bacterial adhesion to quartz sand was enhanced with increasing phosphate concentration. This phenomenon is due to the increase of ionic strength. In contrast, the mass recovery in the coated sand increased from 2.9 to 26.0% as phosphate concentration increased. This indicated that bacterial adhesion to the coated sand was reduced with increasing phosphate concentration, due to the preoccupation of favorable adsorption sites and competitive adsorption by phosphate.

본 연구의 목적은 다공성 여재에서 인산염이 Escherichia coli의 부착에 미치는 영향을 분석하는 것이다. 석영모래와 철피복 모래에서 박테리아 부착에 대한 인산염의 영향을 분석하기 위하여 칼럼실험을 수행하였다. 실험결과, 석영모래에서 인산염의 농도가 0에서 16 mg/L로 증가함에 따라 박테리아의 질량 회수율은 74.5에서 35.4%로 감소하였다. 이는 석영모래에서 인산염의 농도가 증가함에 따라 박테리아의 부착이 향상됨을 나타내는데, 이러한 현상은 이온강도의 증가 때문이다. 반면, 철피복 모래에서는 인산염의 농도가 증가함에 따라 질량 회수율이 2.9에서 26.0%로 증가하였다. 이는 인산염에 의한 호의적 흡착지역 선점과 박테리아와의 경쟁적인 흡착으로 인하여, 인산염의 농도가 증가함에 따라 철피복 모래에서 박테리아의 부착이 감소함을 나타낸다.

Keywords

References

  1. Silliman, S. E., Dunlap, R., Fletcher, M., and Schneegurt, M. A., "Bacterial transport in heterogeneous porous media: observations from laboratory experiments," Water Resour. Res., 37, 2699-2707(2001). https://doi.org/10.1029/2001WR000331
  2. Hall, J. A., Mailloux, B. J., Onstott, T. C., Scheibe, T. D., Fuller, M. E., Dong, H., and Deflaun, M. F., "Physical versus chemical effects on bacterial and bromide transport as determined from on site sediment column pulse experiments," J. Contam. Hydrol., 57, 161-187(2005). https://doi.org/10.1016/S0169-7722(02)00007-4
  3. Truesdail, S. E., Lukasik, J., Farrah, S. R., Shah, D. O., and Dickinson, R. B., "Analysis of bacterial deposition on metal (hydr)oxide-coated sand filter media," J. Colloid. Sci., 203, 369-378(1998). https://doi.org/10.1006/jcis.1998.5541
  4. Lukasik, J., Cheng, Y.-F., Lu, F., Tamplin, M., and Farrah, S. R., "Removal of microorganisms from water by columns containing sand coated with ferric and aluminum hydroxides," Water Res., 33, 769-777(1999). https://doi.org/10.1016/S0043-1354(98)00279-6
  5. Gannon, J. T., Manilal, V. B., and Alexander, M., "Relationship between cell surface properties and transport of bacteria through soil," Appl. Environ. Microbiol., 57, 190- 193(1991).
  6. Fontes, D. E., Mills, A. L., Hornberger, G. M., and Herman, J. S., "Physical and chemical factors influencing transport of microorganisms through porous media," Appl. Environ. Microbiol., 57, 2473-2481(1991).
  7. Yee, N., Fein, J. B., and Daughney, C. J., "Experimental study of the pH, ionic strength, and reversibility behavior of bacteria-mineral adsorption," Geochim. Cosmochim. Acta, 64, 609-617(2000). https://doi.org/10.1016/S0016-7037(99)00342-7
  8. Jiang, D., Huang, Q., Cai, P., Rong, X., and Chen, W., "Adsorption of Pseudomonas putida on clay minerals and iron oxide," Colloids. Surf. B, 54, 217-221(2007). https://doi.org/10.1016/j.colsurfb.2006.10.030
  9. Ams, D. A., Fein, J. B., Dong, H., and Maurice, P. A., "Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroixdecoated and uncoated quartz grains," Geomicrobiol. J., 21, 511-519(2004). https://doi.org/10.1080/01490450490888172
  10. Johnson, B. B., Ivanov, A. V., Antzutkin, O. N., and Forsling, W., "31P nuclear magnetic resonance study of the adsorption of phosphate and phenyl phosphate on $\gamma-Al_2O_3$," Langmuir., 18, 1104-1111(2002). https://doi.org/10.1021/la001537t
  11. Kim, Y. and Kirkpatrick, R. J., "An investigation of phosphate adsorbed on aluminum oxyhydroxide and oxide phases by nuclear magnetic resonance," Eur. J. Soil. Sci., 55, 243-251(2004). https://doi.org/10.1046/j.1365-2389.2004.00595.x
  12. Persson, P., Nilsson, N., and Sjöberg, S., "Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface," J. Colloid. Interf. Sci., 177, 263-275(1996). https://doi.org/10.1006/jcis.1996.0030
  13. Arai, Y. and Sparks, D. L, "ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferric hydrite-water interface," J. Colloid. Interf. Sci., 241, 317-326(2001). https://doi.org/10.1006/jcis.2001.7773
  14. Yao, W. and Millero, F. J., "Adsorption of phosphate on manganese dioxide in seawater," Environ. Sci. Technol., 30, 536-541(1996). https://doi.org/10.1021/es950290x
  15. Kawashima, M., Tainaka, Y., Hori, T., Koyama, M., and Takamatsu, T., "Phosphate adsorption onto hydrous manganese( IV) oxide in the presence of divalent cations," Water Res., 20, 471-475(1986). https://doi.org/10.1016/0043-1354(86)90195-8
  16. Hornberger, G. M., Mills, A. L., and Herman, J. S., "Bacterial transport in porous media: evaluation of a model using laboratory observations," Water Resour. Res., 28, 915-938(1992). https://doi.org/10.1029/91WR02980
  17. Toride, N., Leij, F. J., and van Genuchten, M. Th., "The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments," Research Report No. 137, US Salinity Laboratory.
  18. Scholl, M. A., Mills, A. L., Herman, J. S., and Hornberger, G. M., "The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials," J. Contam. Hydrol., 6, 321-336 (1990). https://doi.org/10.1016/0169-7722(90)90032-C
  19. Redman, J. A., Walker, S. L., and Elimelech, M., "Bacterial adhesion and transport in porous media: Role of the secondary energy minimum," Environ. Sci. Technol., 38, 1777-1785(2004). https://doi.org/10.1021/es034887l
  20. Choi, N. C., Kim, D. J., and Kim, S. B., "Quantification of bacterial mass recovery as a function of pore-water velocity and ionic strength," Res. Microbiol., 158, 70-78(2007). https://doi.org/10.1016/j.resmic.2006.09.007
  21. Johnson, W. P., Martin, M. J., Gross, M. J., and Logan, B. E., "Facilitation of bacterial transport through porous media by changes in solution and surface properties," Colloid. Surf. A, 107, 263-271(1996). https://doi.org/10.1016/0927-7757(95)03349-1
  22. Appenzeller, B. M. R., Duval, Y. B., Thomas, F., and Block, J. C., "Influence of phosphate on bacterial adhesion onto iron oxyhydroxide in drinking water," Environ. Sci. Technol., 36, 646-652(2002). https://doi.org/10.1021/es010155m
  23. Zhuang, J. and Jin, Y., "Virus retention and transport through Al-oxide coated sand columns: effects of ionic strength and composition," J. Contam. Hydrol., 60, 192- 209(2003).