Changes in Spectroscopic Characteristics and Pyrene Binding Reactivities of Dissolved Organic Matters By Biodegradation

생분해에 의한 용존 자연유기물질 분광특성 및 Pyrene 결합반응성 변화

  • Park, Min-Hye (Department of Earth and Environmental Sciences, Sejong University) ;
  • Hur, Jin (Department of Earth and Environmental Sciences, Sejong University)
  • 박민혜 (세종대학교 지구환경과학과) ;
  • 허진 (세종대학교 지구환경과학과)
  • Published : 2008.09.30

Abstract

Changes in spectroscopic characteristics and pyrene binding coefficients of terrestrial dissolved organic matters(DOM) were investigated during microbial incubation. The incubation studies were conducted for 21 days using a leaf litter DOM and a soilderived DOM with an inoculum from a river. The dissolved organic carbon(DOC), the specific UV absorbance(SUVA), the synchronous fluorescence spectra, and the pyrene organic carbon-normalized binding coefficient(K$_{oc}$) of the DOM were measured at the incubation days of 0, 3, 7, 14 and 21. After the 21-day incubation, DOC were reduced to 61% and 51% of the original concentrations of the litter DOM and the soil-derived DOM, respectively. Comparison of the spectroscopic characteristics before and after the incubation revealed that the SUVA, the fulvic-like fluorescence(FLF), the humic-like fluorescence(HLF) of the different DOM were enhanced by the incubation whereas the protein-like fluorescence(PLF) was reduced. This indicates that more aromatic and humic-like compounds were enriched during the biodegradation process while biodegradable and weak carbon structures were depleted. Irrespective of the DOM sources, SUVA values showed a positive relationship with pyrene K$_{oc}$ with a correlation coefficient of 0.97. The FLF and HLF also exhibited good correlations with K$_{oc}$ values although different regression equations were obtained from the different DOM. Our results suggest that the selected spectroscopic characteristics could be good estimation indices for the changes of the binding reactivity of DOM for hydrophobic organic contaminants during biodegradation process.

본 연구에서는 낙엽과 토양에서 추출한 용존 자연유기물질(DOM)을 대상으로 생분해 과정 중 변화하는 분광특성과 pyrene 결합 반응성을 조사하였다. 유기물질 특성 변화 분석을 위해 용존 유기탄소(DOC), 용존 자연유기물질 내 방향족 탄소성분을 나타내는 고유흡광도(Specific UV absorbance: SUVA), synchronous 형광 스펙트럼과 유기탄소결합계수(pyrene organic carbon-normalized binding coefficient: K$_{oc}$) 분석을 실시하였다. 3주간의 배양기간 동안 낙엽 추출 DOM과 토양 DOM의 DOC는 각각 61%, 51% 감소하였다. 배양 전과 후의 분광특성을 비교해 보면 단백질/아미노산 계 형광특징(PLF)은 점차 감소된 반면 SUVA, 펄빅산계 형광 특징(FLF)과 휴믹산 계 형광 특징(HLF)은 점차 증가하였다. 이러한 자연유기물질의 분광특성 변화는 생분해 과정을 통해 휴믹화가 진행되며 자연유기물질 내 비방향족 생분해성 탄소성분이 단단한 구조의 방향족 탄소구조로 변화됨을 시사한다. SUVA 값과 유기오염물질과의 결합정도를 나타내는 K$_{oc}$ 값 사이에서는 시료의 종류와 상관없이 1차 상관관계(r = 0.97)를 보여 주어 생분해가 진행되는 동안 방향족 탄소구조 분포가 자연유기물질의 소수성 오염물질과의 결합 정도에 큰 영향을 미침을 보여주었다. 또한 형광특징 중 FLF와 HLF가 K$_{oc}$ 값과 높은 상관관계를 보였으며 자연유기물질의 기원에 따라 다른 상관관계식을 보여주었다. 본 연구를 통해 생분해가 진행되는 동안 자연유기물질 성분변화 및 소수성 유기오염물질의 거동 예측에 자연유기물질의 분광특성이 좋은 모니터링 지표로 사용될 수 있음을 보여 주었다.

Keywords

References

  1. Hertkorn, N., Claus, H., Schmitt-Koppin, P. H., Perdue, E. M., Filip, Z., 'Utilization and transformation of aquatic humic substances by autochthonous microorganisms,' Environ. Sci. Technol., 36, 4334-4345(2002) https://doi.org/10.1021/es010336o
  2. Ogawa, H., Amagai, Y., Koike, I., Kaiser, K., Benner, R., 'Production of refractory dissolved organic matter by bacteria,' Science, 292(5518), 917-920(2001) https://doi.org/10.1126/science.1057627
  3. 허진, 신재기, 박성원, '하천 및 호소 수질관리를 위한 용존 자연유기물질 형광특성 분석,' 대한환경공학회지, 28(9), 940-948(2006)
  4. Kukkonen, J., Oikari, A., 'Bioavailability of organic pollutants in boreal waters with varying levels of dissolved organic material,' Water Res., 25, 455-463(1991) https://doi.org/10.1016/0043-1354(91)90082-2
  5. Hur, J., Schlautman, M. A., 'Using selected operational descriptors to examine the heterogeneity within a bulk humic substance,' Environ. Sci. Technol., 37(5), 880-887(2003) https://doi.org/10.1021/es0260824
  6. Chin, Y. P., Aiken, G. R., Danielsen, K. M., 'Binding of pyrene to aquatic and commercpial humic substances: The role of molecular weight and aromaticity,' Environ. Sci. Technol., 31(6), 1630-1635(1997) https://doi.org/10.1021/es960404k
  7. Chefetz, B., Deshmukh, A. P., Hatcher, P. G., Guthrie, E. A., 'Pyrene sorption by natural organic matter,' Environ. Sci. Technol., 34(14), 2925-2930(2000) https://doi.org/10.1021/es9912877
  8. Lou, T., Xie, H. X., Chen, G. H., Gagne, J. P., 'Effects of photodegradation of dissolved organic matter on the binding of benzo(a)pyrene,' Chemosphere, 64(7), 1204-1211(2006) https://doi.org/10.1016/j.chemosphere.2005.11.043
  9. Merritt, K. A. and Erich, M. S., 'Influence of organic matter decomposition on soluble carbon and its copperbinding capacity,' J. Environ. Qual., 32, 2122-2131(2003) https://doi.org/10.2134/jeq2003.2122
  10. Leenheer, J. A., Croue, J. P., 'Characterizing aquatic dissolved organic matter,' Environ. Sci. Technol., 37(1), 18A-26A(2004)
  11. Baker, A., 'Inverarity, R., Protein-like fluorescence intensity as a possible tool for determining river water quality,' Hydrological Processes, 18, 927-2945(2004)
  12. Chen, Z. Q., Hu, C. M., Comny, R. N., Muller-Karger, F., Swarzenski, P., 'Colored dissolved organic matter in Tampa Bay, Florida,' Mar. Chem., 104(1-2), 98-109(2007) https://doi.org/10.1016/j.marchem.2006.12.007
  13. Baker, A., 'Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers,' Environ. Sci. Technol., 35, 948-953(2001) https://doi.org/10.1021/es000177t
  14. Hur, J., 'Polycyclic aromatic hydrocarbon(PAH) binding to dissolved humic substances(HS): size exclusion effect,' 한국지하수토양환경학회지, 9(3), 12-19(2004)
  15. McDowell, W. H., Zsolnay, A., Aitkenhead-Peterson J, A., Gregorich, E, G., Jones, D,L., Jodemann, D., Kalbitz, K., Marschner, B., Schwesig, D., 'A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources,' Soil Biol. Biochem., 38, 1933-1942(2006) https://doi.org/10.1016/j.soilbio.2005.12.018
  16. Saadi, D., Borisover, M., Armon, R., Laor, Y., 'Monitoring of effluent DOM biodegradation using fluorescence; UV and DOC measurements,' Chemosphere, 63(2006)
  17. Kalbitz, K., Schmerwitz, J., Schwesig, D., Matzner, E., 'Biodegradation of soil-derived dissolved organic matter as related to its properties,' Geoderma, 113, 273-291(2003) https://doi.org/10.1016/S0016-7061(02)00365-8
  18. Edzwald, J. K., 'Coagulation in drinking water treatment: particles, organics and coagulants,' Water Sci, Technol., 27, 21-35(1993) https://doi.org/10.2166/wst.1993.0261
  19. Laor, Y., Avnimelech, Y., 'Fractionation of compost=derived dissolved organic matter by flocculation process,' Org. Geochem., 33, 257-263(2002) https://doi.org/10.1016/S0146-6380(01)00157-7
  20. Kalbitz, K., 'Properties of organic matter in soil solution in a German fen area as dependent on land use and depth,' Geoderma, 104, 203-214(2001) https://doi.org/10.1016/S0016-7061(01)00081-7
  21. Chen, J., LeBoeuf, E. J., Dai, S., Gu, B., 'Fluorescence spectroscopic studies of natural organic matter fractions,' Chemosphere, 50, 639-647(2003) https://doi.org/10.1016/S0045-6535(02)00616-1