
794 Stephen J.H. Yang et al. ETRI Journal, Volume 29, Number 6, December 2007

In the mobile Internet, users generally work with
handheld devices with limited computing power and small
screens. Their access conditions also change frequently. In
this paper, we present a novel method supporting
intelligent content adaptation to better suit handheld
devices. The underpinning is a unit of information (UOI)–
based content adaptation method, which automatically
detects semantic relationships among the components of
Web contents and then reorganizes page layout to fit
handheld devices based on identified UOIs. Experimental
results demonstrate that our method enables more
sensitive content adaptation.

Keywords: Mobile Internet, content adaptation, Web
content, handheld devices.

Manuscript received: Mar. 22, 2007; revised Aug. 25, 2007.
Stephen J.H. Yang (phone: + 886 3 4227151 35308, email: jhyang@csie.ncu.edu.tw) and

Rick C.S. Chen (email: chungshiuan@csie.ncu.edu.tw) are with the Department of Computer
Science and Information Engineering, National Central University, Jhongli, Taiwan.

Jia Zhang (email: jiazhang@cs.niu.edu) is with the Department of Computer Science,
Northern Illinois University, DeKalb, USA.

Norman W.Y. Shao (email: snorman@giga.net.tw) is with the Naval Shipbuilding
Development Center, Kaohsiung,Taiwan.

I. Introduction

In the mobile Internet environment, users often work with
handheld devices, such as personal digital assistants (PDAs)
and mobile phones, which provide good mobility but limited
computational capabilities and display sizes [1]. Since most
existing Web content was originally designed for display on
desktop computers, direct content delivery without layout
adjustment and content adaptation often leads to
disorganization of information on handheld screens. Moreover,
not every handheld device can play all media types. For
example, a non-multimedia mobile phone cannot play
continuous video clips. Also, users’ access conditions change
more frequently in a mobile Internet environment than in a
desktop-based Internet environment [2], [3].

Content adaptation refers to a technique of dynamically
adjusting content presentation to meet the constraints of
different receiving devices for better presentation [3]. The
conventional approach to providing Web content to support
various types of receiving devices is to prepare the same
content in different formats. This approach is straightforward,
but it is error-prone and results in tremendous overhead. To
support a new device, all previous Web pages have to support a
new format. Even worse, any changes in Web content may
require consequent changes on every involved format.
Obviously, this is neither practical nor feasible for providers of
large volumes of Web content.

However, a simple content adaptation solution of changing a
multi-column layout to a single-column layout for display on
small handheld screens also introduces severe problems.

A Unit of Information–Based
Content Adaptation Method for Improving

Web Content Accessibility in the Mobile Internet

 Stephen J.H. Yang, Jia Zhang, Rick C.S. Chen, and Norman W.Y. Shao

ETRI Journal, Volume 29, Number 6, December 2007 Stephen J.H. Yang et al. 795

Without retaining semantic coherence and relationships among
semantic units, this primitive adaptation may disorganize a
Web page and lead to misunderstanding. Tools and
mechanisms are urgently needed to provide users opportunities
to experience transparent and seamless Web access using either
desktop computers or handheld derives.

An item of Web content is typically composed of multimedia
objects (such as text, images, audio, and video), which are
connected by various relationships. For example, an image can
illustrate a section of a text article; a text title can abstract a text
article or some images. In other words, these related objects are
synergistically integrated to help readers understand what authors
intend to express. Improper rearrangement of these objects and
their relationships may lead to ambiguous expression or loss of
information. Therefore, it is important for a content adaptation
mechanism to maintain the original semantic relationship among
the objects during an adaptation process.

In this paper, we present a novel method supporting dynamic
unit of information (UOI)–based content adaptation for handheld
devices. Our goal is to improve Web content accessibility in the
mobile Internet, while retaining the semantic coherence of the
original content. To achieve this goal, we introduce UOI as an
atomic presentation unit of a Web page; all media objects in a
UOI have to be presented as a whole. Our algorithm
automatically identifies and detects UOIs from Web pages.
Experiments show that our UOI detection algorithm can
successfully identify 78% of UOI segments in our test bed. Our
method also performs well for well-formatted Web pages.

The remainder of this paper is organized as follows. We first
introduce background and related work in section II. We
present our UOI-based content adaptation method in section III.
We present our experimental designs and result analyses in
section IV, and finally, we draw conclusions in section V.

II. Background and Related Work

1. Demands for Content Adaptation

Content adaptation techniques are a response to the wide
demand to improve Web accessibility in mobile computing
environments. In addition to conventional desktop PCs and
laptops, advanced computer technologies have empowered
various handheld computing devices, such as ultra-mobile PCs
(UMPCs), personal digital assistants (PDAs), Pocket PCs, and
smart phones.

Mobile users often encounter various presentation problems
(such as cut layouts and oversized pictures) when they surf the
Internet. Although handheld devices provide good mobility, they
generally have lower computational power, smaller display
screens, and slower network speed. Direct content delivery

without layout adjustment often leads to the disorganization of
information previously mentioned. It also requires users to
constantly move scroll bars vertically and horizontally before
they can perceive a complete piece of information.

Since not every handheld device can play all media types,
content providers have to detect the receiving devices, and the
original contents may have to be adjusted to ensure proper
retrieval on the receiving devices. One solution is to perform
transcoding. Media are transformed into lower quality to
become playable on the corresponding devices. For example,
video clips can be transcoded into static images to be presented
on a non-multimedia phone.

Under some circumstances, it may be unnecessary to deliver
all rich media information. For example, if a user is driving, it
is unnecessary to deliver video clips because drivers are not
supposed to watch video for safety reasons. It should be noted
that detecting users’ environments and providing only
necessary content may save significant bandwidth, which is an
important factor in the mobile Internet.

Users’ access conditions change more frequently in a mobile
Internet environment than in a desktop-based Internet
environment. For example, assume a user uses a mobile phone
to participate in a two-hour multimedia-based meeting. During
the first hour, the user is driving, so she can only listen to audio
conversations; in the second hour, she is sitting in another
conference room so she can only browse video clips occasionally.
Thus, for the first hour, only audio information needs to be
delivered; for the second hour, only video information needs to
be delivered. Consequently, providing mobile Internet with
personalized and adaptive content delivery according to the
user’s environment could offer more user friendly content
provisioning and additionally save significant bandwidth.

Content adaptation can also benefit people with disabilities,
such as deafness and blindness. People who are deaf have the
same service requirements as people who are sitting in a
meeting because they cannot listen to audio. People who are
blind have the same service requirements as people who are
driving because they cannot read content. Those who suffer
from weak vision have the same service requirements as
people who are in a blurred environment (due to sunny or
gloomy weather), so the content should be enlarged or the
background color should be brightened. People who suffer
from weak hearing have the same service requirements as
people who are in a noisy environment (in a marketplace), so
the content volume should be turned louder.

2. Related Content Adaptation Methods

Some researchers have focused on content decomposition
methods. Chen and others [4] proposed a block-based content

796 Stephen J.H. Yang et al. ETRI Journal, Volume 29, Number 6, December 2007

decomposition method, DRESS, to quantify content
representation. An HTML page is factorized into blocks, and
each block is assigned a score denoting its significance. Then,
DRESS selects the block with the highest score to represent the
content. This method prevents the loss of significant
information. It also enables content layout to be adjustable
according to the region of interest, attention value, and
minimum perceptible size [5]. Ramaswamy and others [6]
proposed an efficient fragment generation and caching method
based on the detection of three features: shared behavior,
lifetime, and personalization characteristic. The smallest
adjustable element in these two approaches is a composite of
objects (such as text, image, audio, and video). This granularity
of decomposition is too large for mobile device screens;
therefore, they are not suitable for mobile content adaptation.

Our previous studies in content adaptation [7], [8] focus on
multi-column to single-column layout transformation. We have
proved that this method can provide a better browsing
experience for mobile devices. However, we found that some
semantic errors appear when adjacent media objects crosscut,
and these errors may confuse users. To overcome this deficiency,
we introduce the concept of UOI and present an algorithm to
automatically identify semantically coherent presentation units of
components that have to be shown together.

III. UOI-Based Content Adaptation

As illustrated in Fig. 1, our content adaptation comprises three
main phases: decomposition, transformation, and composition.
In the decomposition phase, the original Web page is structurally
parsed into components based on a predefined content model [7].
Both the layout and constituent elements (text, image, audio, and
video) are extracted separately in this phase. In the
transformation phase, transcoding approaches are used to change
the fidelity and/or modality of the extracted components for
better representation on target devices. In the composition phase,
the presentation styles (layouts) and the adapted components are
reorganized and recomposed into the final contents to be
delivered to the end users.

1. Content Structure Model

A Web page typically contains a set of media objects
carrying encapsulated meanings. The semantics among
presentation components have to be maintained to deliver
correct information. For example, an illustrative figure should
be shown close to its detailed text message. When some
content is adapted to be displayed on different devices, the
semantics of the decomposed portions of the adapted content
should remain the same as in the original content. In other

Fig. 1. Three phases of content adaptation.

Decomposition

Original content

Composition

Transformation

Adapted content

Fig. 2. Content structure model.

UOI2 UOI1

R

Video Audio Text Image

wmv midibmp
24 bit

bmp
2 bit

Video Audio Text Audio Text Image

Structure
layer

Modality
layer

Fidelity
layer

jpeg
1024×728

24 pt 12 pt 8 pt mp3

Image Video

OC1

OC2 OC3 OC5

OC4

OC6

words, adapted objects should be grouped on the basis of
semantic consistency. As a result, determining the object
grouping is the most critical step.

We formalize this object grouping requirement into an
isomorphism problem. The relationships among objects and
formed groups before and after adaptation should be able to be
expressed by an isomorphic graph. To solve this problem, we
utilize a layered content structure model [7] to organize objects
with possible presentation versions of a given Web page. As
shown in Fig. 2, a content structure model maintains available
adaptation rules and possibilities for individual presentation
objects. According to the content structure model, Web content
is organized in three layers, namely, a structure layer, a
modality layer, and a fidelity layer. The structural layer
comprises the objects contained in the content. The modality
layer comprises possible presentation types for each object.
The fidelity layer further specifies possible presentation
formats for each presentation type. For example, object OC6,
shown in Fig. 2, may be presented in four presentation types:
video, audio, text, and image. Its audio presentation type can be
provided in three formats: mp3, wmv, and midi. If the end user

ETRI Journal, Volume 29, Number 6, December 2007 Stephen J.H. Yang et al. 797

is using an mp3 player while driving, OC6 should be provided
in audio using an mp3 format.

We then extend the content structure model by incorporating
object relations into its structure layer. The goal is to maintain
semantic inherences among objects in the layout re-
arrangement to enable more sensitive content adaptation under
various circumstances and contexts.

2. Unit of Information and Segment Tree

As shown in Fig. 2, we define an atomic information unit, or
unit of information (UOI), as a semantic unit comprising a set
of segments and media objects that have to be presented
together on the same screen. In our research, the UOI is
considered the basic presentation unit of Web content. In the
content structure model, the composition of UOIs is expressed
in the structure layer. The UOIs have to be identified in the
decomposition phase. The subsequent transformation and
composition phases have to retain the UOIs unbroken.

A UOI contains two types of elements: segments and object
clusters. To design Web page content in a markup language
(such as HTML), authors typically use various partition
elements (HTML tags, such as <frameset>, <table>, and
<div>) to arrange the layout of information objects. These
partition elements contain no substantial information; rather,
they include layout arrangements and containing relationships.
Each of these partition elements is called a segment. Thus, a
Web page can be decomposed into a set of segments organized
in a hierarchical structure, as shown in Fig. 3. This structure is
called a segment tree.

Segments can be further classified into two types: arranging
segments (ASs) and containing segments (CSs). Figure 4 is a
segment tree which illustrates the concepts and relationships
between AS, CS, and OC. The purpose of constructing a
segment tree is to detect UOIs in a Web page. An AS refers to a
partition element which contains no concrete media objects as
direct children. It is used to define the layout of a specific portion

Fig. 3. Relationship among Web page, segments, and object
clusters (OCs).

Segment

Segment

OC

OCOC

Web page

…

… Segment

Segment

OC

Fig. 4. Segment tree containing arranging segment (AS),
containing segment (CS), and object cluster (OC).

AS

CS

OC

Arranging segment

Containing segment

AS

CS

OC Object cluster

of a Web page. In contrast, a CS refers to a partition element
which contains at least one concrete media object as a child.

All media objects of a Web page are further classified into
different object clusters based on their types. Without losing
generality, in this research, we consider four types: text, image,
audio, and video. After a parsing process, the presentation
components are identified as objects associated with
presentation attributes. The objects with the same attributes
(that is, modality) may have the same semantic hierarchies. An
object cluster is thus defined as a collection of media objects
that possess the same modality inside of the same containing
segment (CS). Six types of object clusters are identified:

- text cluster (TC) (text objects)
- still image cluster (SIC) (jpg, bmp, tiff, and gif objects)
- video cluster (VC) (avi, wmv, and mpg objects)
- dynamic image cluster (DIC) (png and gif objects)
- Flash cluster (FC) (swf objects)
- audio cluster (AC) (mp3 and wav objects)

3. Algorithm to Construct a Segment Tree

Figure 5 shows the pseudo-code of the segment-tree
construction algorithm. The procedure includes HTML clean up,
tag parsing, object cluster annotation, and segment annotation.

HTML provides great flexibility to integrate a variety of
multimedia types; however, the fact that it allows free style
writing makes it hard to identify and determine various types of
objects in an HTML document. To overcome this problem, our
first step is to transform the content into a well-formed format
using the open-source package “Tidy” [9]. Then, the well-
formed HTML page is parsed into a tree-like structure, in
which each node represents a tag in the page.

In theory, any XML parser could be used to parse the HTML
content. The generated segment tree structure is traversed to
search for object clusters. We use file extensions to identify the

798 Stephen J.H. Yang et al. ETRI Journal, Volume 29, Number 6, December 2007

Fig. 5. Algorithm to construct a segment tree.

page = cleanup(page);
tree = parsePage(page);

//Annotate object clusters (OC)
public void markOC(Node n) {
 if (n.children != null) {
 for (int i = 0; i <= n.children.length(); i++)
 markOC(n.children[i]);
 }

if ((n.isTC() || n.isSIC() || n.isVC() || n.isDIC() || n.isFC() || n.isAC())
 n.type = “OC”;

}

//Annotate arranging segment (AS) & containing segment (CS)
public void markASCS(Node n) {
 if (n.children != null) {
 for (int i = 0; i <= n.children.length(); i++)
 markASCS(n.children[i]);
 }
 if ((n.type!=“OC”)&&(n.numOfOCChildren()>=1))
 n.type = “CS”;
 else n.type = “AS”;
}

six types of object clusters. Take the following tag as an example:

The tag node is considered as a still image cluster (SIC) due
to its file extension “jpg.” In general, any tree traversal
algorithm is applicable here. We adopted a recursive post-order
traversal algorithm, where each node is visited after all of its
child nodes are visited.

After all object clusters are annotated, we traverse the
segment tree once again to identify containing segments and
arranging segments. Take the following example:

<li id=" 82">

 Holiday wreath sparks controversy

Recall that the “img” segment has been annotated as an

object cluster. Its enclosing segment “a href” contains an object
cluster; therefore, it is marked as a containing segment. Since
the outmost segment “li” only has one containing segment as a
direct child, it is marked as an arranging segment.

The result of this construction algorithm for a Yahoo Web
page (Fig. 6(a)) is a segment tree, as shown in Fig. 6(b), in
which each node is annotated as one of three categories, OC,
CS, or AS. The annotation numbers of decomposed segments
shown in Fig. 6(b) are marked in Fig. 6(a). For example, one
top-level segment (#1) represents the tool bar including the
Yahoo logo. The next step is to identify and detect UOIs in the

Fig. 6. (a) Original Yahoo Web page and (b) its constructed
segment tree.

1

4
7

10

13 16

2

3 5
6

8

11

12 15

14

9

46
47

49
48

50

51

53 55
56

5452

45
4443

4241

40
26

27

34 28

36

3937

30

33

31

21

17
18

19

20

22
23

24

25

29
35

38
32

Content

Content : Content

: Arrangement segment

: Containing segment

: Object cluster

(a)

(b)

segment tree.

4. Identification and Detection of UOIs

Figure 7 shows our UOI detection algorithm which is
designed on the basis of a segment tree. Figure 8 illustrates the
detailed rules for annotating and merging various segment nodes
to identify UOIs. Our algorithm goes through a two-phase
process: the first phase traverses the initial segment tree and
annotates an initial set of UOIs (step 1); the second phase

ETRI Journal, Volume 29, Number 6, December 2007 Stephen J.H. Yang et al. 799

 //Step 1. Annotate UOIs (post-order)
public void markUOI(Node n) {
 if (n.children != null) {
 for (int i = 0; i <= n.children.length(); i++)
 markUOI(n.children[i]);
 }

if ((n.type ==”as”) && (n.color != null) && (n.numOfOCChildren() >=2))
 n.type = “uoi”;
}

// Step 2. Identify UOI candidates and groups
public void markUOICandidateGroup(Node n) {
 if (n.type == “uoi”) return; //uoi already
 if (n.children != null) {
 for (int i = 0; i <= n.children.length(); i++)
 markUOICandidateGroup(n.children[i]);

}
 if ((n.type == “cs”) && (n.numOfOCChildren() >= 2))
 n.type = “uoic”;
 if ((n.type==“cs”) && (n.numOfOCChildren()==1))
 n.type = “group”;
 }

// Step 3. UOI determination
public int determineUOI (Node n) {
 if (n.children != null)
 for (int i = 0; i <= n.children.length(); i++)
 determineUOI (n.children[i]);

 //3.0 if all children are UOI candidates
 if (n.children != null) {
 boolean flag = true;
 for (int i = 0; i <= n.child.length(); i++)
 if (n.child[i].type != “uoic”) {flag = false; break;}
 if (flag) n.type = “uoic”;
 return 0;
 }

 if (n.type != “group”) return 0;

 //3.1 merge group with UOI candidate child
 if (n.contain_UOIC_child()) n.type = “uoic”;

 //3.2 merge group with adjacent UOI candidate
 if ((!contain_uoic_child()) && (n.has_uoic_sibling()))
 n.type = “uoic”;

 //3.3 merge group with adjacent group
if ((!contain_uoic_child()) && (!n.has_uoic_sibling())

&& (!n.has_group_sibling())) {
 n.type = “uoic”;
 //assign “uoic” to adjacent group
 }

 //3.4 merge group upward
if ((n.child == null) && (!n.has_sibling())) {

n.parent = “group”;
return “-1”;

 }
}

// Step 4. UOI Remark
public void remarkUOI(Node n) {
 if (!groupExist(n)) {
 if (n.children != null)
 for (int i = 0; i <= n.children.length(); i++)
 markUOICandidateGroup(n.children[i]);
 if (n.type == “uoic”) n.type = “uoi”;
 }
}

Fig. 7. UOI detection algorithm.

traverses the resulting segment tree from phase 1 to further
identify all possible UOIs (steps 2 to 4).

In step 1, the initial segment tree is recursively traversed in
post-order to identify all UOIs. As shown in Fig. 8(1), a
segment node is annotated as a UOI if it meets all three
conditions: its type is AS, it has been annotated with a color
attribute, and it contains at least two OC children.

In step 2, UOI candidates and groups are identified in a
segment tree. As shown in Fig. 8(2.1), a segment is marked as
a UOI candidate if it meets two conditions: the segment type is
CS and the segment contains at least two OC children. As
shown in Fig. 8(2.2), a segment is marked as a group if it meets
two conditions: the segment type is CS, and the segment
contains only one OC child.

Step 3 deduces more UOIs by merging UOI candidates and
groups in the resulting segment tree in four ways. In step 3.1, as
shown in Fig. 8, if a group contains a UOI candidate as a child,
it merges with its UOI candidate child to form a new UOI
candidate. In step 3.2, as shown in Fig. 8, if a group contains no
UOI candidate children but has an adjacent UOI candidate
sibling, it merges with the UOI candidate sibling to form a new
UOI candidate. If the newly formed UOI candidate has no
siblings, it is further merged with its parent to form a new UOI
candidate. This process may be recursively repeated toward the
root of the tree. In step 3.3, as shown in Fig. 8, if a group has
neither UOI candidate children nor siblings but has an adjacent
group sibling, it merges with its adjacent group sibling to form
a new UOI candidate. If the newly formed UOI candidate has
no siblings, it is further merged with its parent to form another
UOI candidate. Again this process may be recursively repeated
toward the root of the tree. In step 3.4, as shown in Fig. 8, if a
group does not have any child or sibling, it is merged with its
parent to form a new group, and the process goes back to step
3.1.

Finally, step 4 cleans up the resulting segment tree. If no
group exists in the segment tree, all UOI candidates are marked
as UOIs.

5. Content Adaptation through UOI-Based Segment Tree

Our proposed algorithm helps to automatically detect all UOIs
of a Web page. Through this process, a segment tree is
constructed and annotated by UOIs, which can be used to
generate the final adapted content (such as HTML format).
Figure 9 illustrates the relationships between the original content,
the UOI-based segment tree, and the final adapted content.

Figure 9(a) shows the original content designed for PC or
notebook, which contains 12 information objects (OC1 to
OC12). To browse the same content via a PDA, however, its
size is far larger than a PDA screen. As shown in Fig. 9(b), a

800 Stephen J.H. Yang et al. ETRI Journal, Volume 29, Number 6, December 2007

Fig. 8. UOI identification and detection process.

OC OC…
… OC OC …

…

CS:
UOI candidate CS

OC OC

CS CS: group

AS
color=“blue”

OC

AS

CS

OC OC

CS

OC

OC OC

OC OC

CS

OC OC

CS CS: group

OC

OC OC

CS: UOI candidate

OC OC OC

AS

CS CS

OC OC OC

AS

OC OC OC

AS

OC OC OC

AS: UOI
candidate

CS: UOI
candidate CS: UOI

candidate

CS: UOI
candidate

CS: UOI
candidate

CS:
group

OC OC

AS

CSCS

OC OC

AS

OC OC

AS

CS:
group

CS: UOI
candidate

OC OC

CS:
group

CS: UOI
candidate

CS:
group

AS: UOI
candidate

CS:
group

OC

OC OC …

Root

CS

CS

OC

OC OC…

AS AS:
group

CS:
group

CS: UOI
candidate

Root

OC

OC OC

AS
group

CS: UOI
candidate

Root
group

Back to (3.1)

AS: UOI

AS
color=“blue”

CS: UOI candidate CS: UOI candidate

CS: UOI
candidate

CS
group

(1)

(2.1)

(2.2)

(3.1)

(3.2)

(3.3)

(3.4)

…… …… ……

… …

…

…
…

PDA may only present 3 full units (OC3, OC8, and OC10) and
part of one unit (OC9). A user has to move the scroll bar
vertically and horizontally to view the entire content. Therefore,
the original content (in HTML) is transformed into a segment
tree, as shown at the top of Fig. 9, by extracting UOIs
containing content objects and segments.

After UOI detection and evaluation, the nodes in the
segment tree are reorganized under corresponding UOI nodes.
As shown in Fig. 9, four UOIs are identified and include all
presentation units. For example, UOI1 contains the three units
in the upper section of the original design shown in Fig. 9(a),

OC1, OC2, and OC3. Then, if each UOI fits on the PDA
screen, their locations are rearranged in columns, as in Fig. 9(c).
The original multi-column layout is changed into a single-
column layout.

If the largest UOI in the content cannot fit onto a small
screen, the scales and positions of the objects in the UOI should
be further adjusted for a suitable presentation. Note that the
objects comprising the same UOI may require some layout
relationships (such as parallel and serial). As shown in Fig. 9(c),
OC3 should be presented to the right of OC2 (parallel), and
OC2 should be presented after OC1 (serial). Layout adaptation

ETRI Journal, Volume 29, Number 6, December 2007 Stephen J.H. Yang et al. 801

(b) Original content on a PDA

Fig. 9. Content adaptation process with UOI-based segment tree.

R

Column-oriented rearrangement

Screen of a notebook or a PC

Screen of a PDA

Scroll bar

Screen of a PDA
Scroll bar Screen of a phone

(a) Original content on a notebook or a PC

(c) Adapted content on a PDA (d) Adapted content on a phone

Segment tree

Adapted content (HTML) Original content (HTML)

UOI1 UOI2 UOI3 UOI4

OC1 OC4 OC7 OC10

OC2 OC3 OC5 OC6 OC8 OC9 OC11 OC12

OC1

OC2 OC3

OC4

OC5 OC6

OC7

OC8 OC9

OC10

OC11 OC12

OC1

OC2

OC4

OC5

OC3

OC6

OC7

OC8

OC10

OC11 OC12

OC9

OC1

OC2

OC4

OC5

OC3

OC6

OC7

OC8

OC10

OC11

OC9

OC12

OC1
OC2 OC3

OC4 OC5 OC6

OC7 OC8 OC9

OC10 OC
11

Scroll bar

OC
12

should maintain these implicit relationships. As shown in
Fig. 9(d), to keep an entire UOI on one screen, the layout
positions between containing objects are adjusted. Both OC2
and OC3 are changed to be parallel with OC1 with reduced
sizes. Thus, their implicit inter-relationships are maintained.
This study focuses on UOI-based fragment detection; therefore,
the algorithm for adjusting layout positions will not be
discussed. For details, see our previous works, [7] and [8].

IV. Experiments and Discussion

To evaluate our proposed UOI detection algorithm for Web
page decomposition, we designed and conducted a set of
experiments to measure the correctness rate of UOI detection.
We conducted experiments for both visual performance and

quantitative analysis. The visual performance experiment was
designed to evaluate the performance of our UOI detection
method on Web page adaptation and transformation. We
randomly selected a set of Web sites, some are text-oriented
(e.g., Yahoo site) while some are image-oriented (e.g., B’z
site). For each Web site, we used a PDA screen to visualize
three results: the Web page without any adaptation, the Web
page with primitive content adaptation algorithm applied
(directly transforming multi-column to single-column layout),
and the Web page with UOI detection-based content
adaptation applied. The visualization results for each Web site
under the three strategies were captured as screen shots for
comparison.

The experiment for quantitative analysis was designed to
quantitatively examine whether our proposed UOI detection

802 Stephen J.H. Yang et al. ETRI Journal, Volume 29, Number 6, December 2007

method could successfully identify all UOIs of a Web page. We
designed a four-stage validation procedure to measure the
correctness rate of UOI detection: Stage 1 builds a target
baseline; Stage 2 executes our algorithm; Stage 3 evaluates the
result against the baseline; Stage 4 further assesses whether our
algorithm could facilitate context-aware service provisioning in
a mobile computing environment.

The goal of stage 1 is to establish a comparison baseline for
later stages. A Web page is manually browsed to identify all
UOIs. The information objects which have the same or similar
semantic meanings are grouped into a UOI.

In stage 2, our proposed UOI detection algorithm is executed
over the same Web page to identify UOIs. The identification
process is automatically executed and monitored.

The goal of stage 3 is to evaluate the correctness rate of UOI
detection and identify the misdetermined or lost information
objects using our proposed UOI detection algorithm. The
results from stage 1 and stage 2 are compared to calculate the
correctness rate. The erroneous fragments are scrutinized for
future improvement.

The goal of stage 4 is to visually validate whether our UOI
detection algorithm could maintain the semantic meanings of
the original content. Our method is to adapt the Web page
based on UOIs identified in stage 2 and show the results on a
PDA screen. Considering the limited size of a PDA screen, the
presentation sequence of the page is re-arranged by forming a
single-column layout based on identified UOIs. The
transformation of the original Web page presentation into a
single-column layout is just one simple yet efficient way to
evaluate our algorithm. The visual effect is examined to
validate whether the original semantic meanings are
maintained.

1. Performance Analysis of UOI Detection Method

We constructed a test bed with 35 Web sites grouped in four
categories: 5 from academia, 2 from news stations, 11 from
business corporations, and 17 from general Web portals.
Without losing generality, we randomly selected Web sites as
testing samples. For each selected Web site, we performed the
designed four-stage validation procedure. The results were
monitored and accumulated for analysis.

The comprehensive test results for each of the selected 35
testing samples are summarized in Table 1. For each testing
Web site, we measured the results for the following five
factors: the number of manually identified UOIs, errors
occurring in the decomposition phase, errors occurring in the
composition phase, incorrectly identified UOIs, and correctly
identified UOIs. The detected errors caused by the UOI
detection algorithm in stage 3 are counted and analyzed in the

decomposition phase; the detected errors caused by the
presentation rearrangement in stage 4 are counted and analyzed
in the composition phase. Errors caused by decomposition are
further divided into two categories: data loss in the pre-process
and errors caused by the UOI detection algorithm. Errors
caused by composition are further divided into two categories:
errors cause by misarrangement and errors caused by
composition.

The data from Table 1 indicates that our proposed UOI
detection algorithm successfully detected an average of
78.49% of UOIs from the Web content in the test bed.
Comparing the adaptation results from the four categories of
Web pages, we found that the academic Web sites have the
highest correctness rate of UOI detection (88.06%). The
business Web sites have the second highest correctness rate,
followed by general portals with a 72.98% correctness rate.
News station Web sites have the lowest correctness rate
(48.89%).

The data shows that our algorithm has a promising high
correctness rate of UOI detection when the Web sites provide
well-formatted Web pages. Academic and business Web sites
are typically developed by professional Web developers and do
not undergo frequent changes, and this may be the reason our
UOI detection algorithm shows a constant high correctness rate
for Web sites in the two categories. In particular, it showed a
100% correctness rate of UOI detection for 5 business Web
sites (about half of the Web sites we tested in this experiment).
By examining and monitoring one of the business Web sites
(IBM) with a low correctness rate of UOI detection, we found
that the Web site undergoes frequent changes. As a result,
inconsistent HTML formats are prone to reduce the correctness
rate of UOI detection.

Web sites belonging to the category of general portals are
developed by people with varying levels of Web development
skills. Therefore, our UOI detection algorithm shows high
correctness rates for some sites (such as 100% for the Yahoo
Web site) and low correctness rates for some other Web sites
(such as 27.27% for the Swirve Web site).

It is difficult to successfully detect UOIs on news Web sites.
As shown in Table 1, only 24 out of 103 UOIs were identified
in the CNN Web site. After careful examination of
corresponding Web sites, we found that they include an
enormous number of “table” fragments and a variety of
multimedia information. This causes our UOI detection
algorithm to produce many false segment nodes and leads to
incorrect merging in step 3. We also found that news Web sites
undergo constant changes, and this leads directly to
inconsistent or untidy HTML content here and there. This
factor also greatly affects the correctness rate of our UOI
detection algorithm.

ETRI Journal, Volume 29, Number 6, December 2007 Stephen J.H. Yang et al. 803

Table 1. Experimental results of the UOI detection from 35 Web sites.

Decomposition Composition Error UOI Correct UOI
Index Category Websites

Detected
UOI no. Data loss in the

pre-process
Errors from

stage 3
Errors caused by
mis-arrangement

Errors caused by
composition No. Percentage No. Percentage

1 Harvard 12 3 3 25.00% 9 75.00%

2 Berkeley 16 2 2 12.50% 14 87.50%

3 MIT 4 0 0.00% 4 100.00%

4 NCU 9 2 2 22.22% 7 77.78%

5

School

NKFUST 3 0 0.00% 3 100.00%

6 BBC 47 2 7 3 12 25.53% 35 74.47%

7
News

CNN 103 72 1 6 79 76.70% 24 23.30%

8
Scientific
American 32 9 9 28.13% 23 71.88%

9 Apple 7 1 1 14.29% 6 85.71%

10 ASUS 6 1 1 16.67% 5 83.33%

11 NTT DoCoMo 10 0 0.00% 10 100.00%

12 Socket 10 0 0.00% 10 100.00%

13 B'z 1 0 0.00% 1 100.00%

14 Inaba 3 0 0.00% 3 100.00%

15 CASINO 12 1 8.33% 11 91.67%

16 IBM 13 4 4 30.77% 9 69.23%

17 francetelecom 14 0 0.00% 14 100.00%

18

Business

NotiEmail 6 2 2 33.33% 4 66.67%

19 Yahoo 19 0 0.00% 19 100.00%

20 rediff 25 4 2 6 24.00% 19 76.00%

21 Love To Know 72 2 2 2.78% 70 97.22%

22 Best Spider 5 0 0.00% 5 100.00%

23 Flavorpill 16 1 2 3 18.75% 13 81.25%

24 Intermix 8 2 2 25.00% 6 75.00%

25 Web 100 3 0 0.00% 3 100.00%

26 Top 10 Links 4 1 1 25.00% 3 75.00%

27 iWon 23 2 1 3 13.04% 20 86.96%

28 My Way 7 4 1 5 71.43% 2 28.57%

29 Sify 28 1 14 15 53.57% 13 46.43%

30 BONZI 4 1 1 25.00% 3 75.00%

31 Swirve 11 8 8 72.73% 3 27.27%

32 Irish Abroad 12 1 4 5 41.67% 7 58.33%

33 Thing Find 23 0 0.00% 23 100.00%

34 DIMUSEUM 11 5 5 45.45% 6 54.55%

35

Portal

Elite 22 8 1 9 40.91% 13 59.09%

Total 601 13 128 9 30 181 21.51% 420 78.49%

804 Stephen J.H. Yang et al. ETRI Journal, Volume 29, Number 6, December 2007

2. Visual Effect Analysis

Figure 10 shows the visualized results on PDAs applying
different strategies on three randomly selected Web sites (Inaba,
B’z, and Yahoo) either focusing on images or on texts. The
experimental results for each Web site occupy one row, which
comprises three screen shots: original content, adapted content
without UOI detection, and adapted content based on UOI
detection. As shown in Fig. 10, content adaptation based on our
UOI detection algorithm effectively reorganizes and adjusts the
original content on a PDA screen.

Some Web sites emphasize image-oriented content, such as
Inaba and B’z as shown in Figs. 10(a.1) and (b.1), respectively.
Using the primitive column-wise approach, each object is
treated independently. Thus, the adaptation process may scale
up one image object to the entire screen size. Moreover, some
unrelated information objects may be integrated into one
screen, as shown in Figs. 10(a.2) and (b.2). This simple object-
based adaptation may cause confusing representation. In

Fig. 10. Comparison of visualization effect from (a) Inaba,
(b) B’z, and (c) Yahoo: (1) without adaptation, (2) primitive
column-wise adaptation, and (3) UOI-based adaptation.

(a.1) (a.2) (a.3)

(b.1) (b.2) (b.2)

(c.1) (c.2) (c.3)

contrast, by applying our UOI detection algorithm, the original
semantic meanings associated with objects are preserved in the
process of content adaptation. As shown in Figs. 10(a.3) and
(b.3), original large images are scaled down to fit into the PDA
screen, associated with related information.

Some Web sites emphasize text-oriented content, such as
Yahoo as seen in Fig. 10(c.1). Using the primitive column-wise
approach, each information object (mostly text-oriented object)
is adapted based on delivery context. However, the
presentation sequence of the adapted objects may become
ambiguous, as shown in Fig. 10(c.2). By using our UOI
detection algorithm, the related information objects are grouped
as an integral presenting unit as shown in Fig. 10(c.3). The
semantic relationships between information objects are
preserved.

3. Analysis on Detection Errors

We further analyzed the possible causes leading to UOI
identification failures. Based on the statistical information
summarized in Table 1, we identified four categories of causes
which are shown in Fig. 11.

Information loss in the decomposition phase results in 4.97%
of the total number of errors. Errors which occur in step 3 of UOI
detection algorithm contribute to 70.72% of the total number of
errors. Information loss in the composition phase leads to
17.13% of the total number of errors; and misarrangement in the
composition phase results in 7.18% of the total number of errors.

We utilize HTML Tidy [9] to transform the original Web
pages to well-formatted contents before generating a segment
tree, but due to the free-writing style of HTML, some
information objects may be lost during the transformation
process. For example, Fig. 12(a) shows two information
objects, one Flash object marked by F(1) and an image object
marked by I(2). Through visual analysis, they should form one

Fig. 11. Distribution of detection error causes.

Information loss in decomposition phase
Step 3 of UOI detection algorithm
Information loss in composition phase
Misarrangement in composition phase

17.13%

4.97%

7.18%

70.72 %

ETRI Journal, Volume 29, Number 6, December 2007 Stephen J.H. Yang et al. 805

Fig. 12. (a) Correct UOI detection through a manual process and
(b) erroneous UOI detection due to information loss in
and the decomposition phase.

(a) (b)

Fig. 13. (a) Correct UOI detection through a manual process and
(b) erroneous UOI detection caused by step 3 in the UOI
detection algorithm.

(a) (b)

Fig. 14. (a) Correct UOI detection through a manual process and
(b) erroneous UOI detection due to information loss in
the composition phase.

(a) (b)

UOI enclosed by a red box. Nevertheless, after the Tidy
transformation process, only the image object is left as shown
in Fig. 12(b). The Flash object F(1) is lost, which results in a
detection error.

In step 3 in our UOI detection algorithm, a standalone group
should be merged with its adjacent segment nodes. However, if
corresponding HTML scripts do not follow the exact formats,
the merge attempt may fail. Figure 13 shows such a UOI

Fig. 15. Erroneous UOI detection due to miss-arrangement in the
composition phase.

(a)

(c)

(b)

detection error due to an inadequate merge. In Fig. 13(a), a
manually identified UOI contains a set of adjacent segment
nodes. In Fig. 13(b), the detection results of step 3 split the UOI
into five UOIs, which is apparently a UOI detection error.

In the composition phase, some information may be lost due
to the limited screen size of wireless devices. To transform a
multi-column layout into a single-column one, composition
rules may lead to errors. In the composition process, if
comprising UOIs involve content adaptation, sometimes
information in some identified UOIs may be lost. For example,
in Fig. 14(a), the UOI enclosed by a purple box consists of
several information objects. However, after adaptation and re-
composition, some information was lost as shown in Fig. 14(b).

In the composition phase, misarrangement may also lead to
errors, if the relationships among the UOIs are incorrectly
interpreted. For example, in Fig. 15, the presenting sequence of
UOIs should be shown as (a), (b), and then (c). However, after
composition, this presentation sequence is incorrectly arranged
as (a) and (c) followed by (b).

4. Further Discussions

Our experiments show that our UOI detection algorithm
works well with well-formatted HTML Web pages. Regarding
ill-formatted Web pages, it seems that more cleanup work is
necessary in addition to that which can be done by the Tidy
package we have adopted. We are working on this topic in our
current research work.

Based on our working experiences in the software industry,
the reason many existing HTML pages are irregular and ill-
formatted is not because their creators intentionally confuse the
HTML expression of the pages in order to make difficulties for
algorithms such as the one proposed in this paper. Rather, it is
mainly due to two reasons. First, many Web page designs

806 Stephen J.H. Yang et al. ETRI Journal, Volume 29, Number 6, December 2007

involve non-technical developers (such as visual designers),
who are not familiar with HTML or any programming
languages. They typically exploit some HTML page design
tools such as DreamWeaver. While these tools provide a
fantastic “what you see is what you get” feature, their
generated HTML code is not well-formatted, let alone after
multiple rounds of editing (add and remove). Second, an
ongoing Web page, such as a CNN page, typically goes
through many versions, which may involve different
developers with various coding habits and preferences. Even
worse, it is a common practice in Web page development that a
new page is built by modifying on top of an existing page,
especially when the time constraints are tight. For example,
CNN has to generate many pages on a daily basis. As a result,
it is impractical to require page designers (or content generation
systems that build the pages) to always provide regulated
formats. It is obviously challenging for researchers to explore
approaches to fill the gap. While there are still many
challenging issues remaining unsolved, our reported work in
this paper establishes a technical foundation and framework for
building such a content adaptation engine to automatically
transform existing HTML pages into appropriate formats to be
shown on mobile devices.

Even with well-formatted Web pages, there is still room to
further improve content analysis. In the real world, it is
common for a Web page to undergo multiple changes
involving different developers. It is possible that some implicit
semantic relationships and dependencies exist in a Web page.
To adapt such a Web page according to its original semantic
coherence, it is necessary to analyze and identify these implicit
semantic segments, and this is our ongoing research topic.

We also found several shortcomings in our current
adaptation techniques, such as the lack of capability to process
script languages (such as JavaScript and VBScript), and the
lack of a session and message processing mechanism (such as
login session). We are planning to address these shortcomings
in our future research.

We found one particularly interesting phenomenon. Many
Web pages have similar layout structures, even though their
contents are significantly different. These similar but rarely
changed portions, such as header fragments and navigation
fragments, occupy significant storage space and consume
many computing resources. To speed up the decomposition
process and reduce required storage space, we plan to continue
to work on an intelligent fragment detection method to
examine similar fragments among Web pages.

Moreover, we realize that our content adaptation algorithm
consumes some processing time. Based on our current test bed,
the delay is acceptable (within 11 seconds on average).
However, we plan to design a dedicated set of experiments to

systematically measure and evaluate the impact of the content
adaptation process on the performance of Web browsing of
various types of content pages. We plan to identify extreme
situations in which the impact is too significant to ensure a
reasonable response time in a mobile device. We also plan to
examine and compare the processing delay caused by
individual steps of our content adaptation to improve
performance.

V. Conclusion

In this paper, we presented a UOI-based dynamic content
adaptation approach. We presented algorithms that
automatically detect semantic relationships among components
in a Web page and then reorganize page layout to suit handheld
devices based on identified UOIs. Our experiments
demonstrated that our UOI detection algorithm effectively
preserves semantic meanings and the coherence of information
objects in a Web page and can greatly facilitate the adaptation
of Web pages to mobile devices, and that it works especially
well with well-formatted Web pages.

We are continuing our research in several directions. First,
we are investigating how to detect and elicit semantic segments
from original HTML content by identifying implicit semantic
dependencies and relationships in addition to HTML tag
relationships. Also, we are exploring how to add the capability
of processing script languages to our content adaptation
mechanism. We are also examining page layout patterns to
improve the performance of content decomposition process.
We are designing test cases to examine the overall performance
impact, as well as the impact of the composing steps our
content adaptation algorithm on Web browsing. Finally, we are
studying Web 2.0 technology to further enhance our content
adaptation technique.

References

[1] M.K. Kim and K.Y. Jee, “Characteristics of Individuals
Influencing Adoption Intentions for Portable Internet Service,”
ETRI Journal, vol. 28, no. 1, Feb. 2006, pp. 67-76.

[2] M. Roman, N. Islam, and S. Shoaib, “A Wireless Web for
Creating and Sharing Personal Content through Handsets,” IEEE
Pervasive Computing, Jan.-Mar., 2005, vol. 4, no. 2, pp. 67-73.

[3] A. Pashtan, S. Kollipara, and M. Pearce, “Adapting Content for
Wireless Web Service,” IEEE Internet Computing, 2003, vol. 7,
no. 5, pp. 79-85.

[4] L.Q. Chen, X. Xie, W.Y. Ma, H.J. Zhang, H.Q. Zhou, and H.Q.
Feng, DRESS A Slicing Tree Based Web Representation for
Various Display Sizes, Technical Report MSR-TR-2002-126,
Microsoft Research, 2002.

ETRI Journal, Volume 29, Number 6, December 2007 Stephen J.H. Yang et al. 807

[5] L.Q. Chen, X. Xie, X. Fan, W.Y. Ma, H.J. Zhang, and H.Q. Zhou,
A Visual Attention Model for Adapting Images on Small Displays,
Technical Report MSR-TR-2002-125, Microsoft Research, 2002.

[6] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis, “Automatic
Fragment Detection in Dynamic Web Pages and Its Impact on
Caching,” IEEE Trans. Knowledge and Data Engineering, vol.
17, no. 6, 2005, pp. 859-874.

[7] S.J.H. Yang and N.W.Y. Shao, “An Ontology Based Content
Model for Intelligent Web Content Access Services,” Int’l
Journal of Web Service Research (JWSR), vol. 3, no. 2, Apr.-June
2006, pp. 59-78.

[8] S.J.H. Yang and N.W.Y. Shao, “Enhancing Pervasive Web
Accessibility with Rule-Based Adaptation Strategy,” Expert
System with Applications, vol. 32, no. 4, May 2007, pp. 1154-
1167.

[9] HTML Tidy Library Project, http://tidy.sourceforge.net/.

Stephen J.H. Yang received his PhD degree in
computer science from the University of Illinois
at Chicago in 1995. He is now a professor of the
Department of Computer Science &
Information Engineering and the Associate
Dean of Academic Affairs, National Central
University, Taiwan. He is the co-founder and

the CEO of T5 Corp, a company providing XML-based Web services.
Dr. Yang has published 2 books and over 140 journal articles and
conference papers. He is currently on the advisory board of the
Advances in Web Services Research Book Series, IGI Global. He is a
member of the editorial boards of the International Journal of Web
Services Research and the International Journal of Knowledge and
Learning. He severed as the Program Co-Chair of IEEE MSE 2003,
IEEE CAUL 2006, and IEEE W2ME 2007. His research interests
include Web services, Web 2.0, software engineering, knowledge
engineering, semantic Web, and context aware ubiquitous computing.
He is a member of IEEE.

Jia Zhang received her PhD in computer
science from University of Illinois at Chicago in
2000. She is now an assistant professor of the
Department of Computer Science at Northern
Illinois University. hang has published 1 book
titled “Service Computing” and over 70
refereed journal articles, book chapters, and

conference papers. She is an associate editor of the International
Journal of Web Services Research (JWSR) and an associate editor of
the Advances in Web Services Research (AWSR) Book Series, IGI
Global. Zhang serves as Program Vice Chair of IEEE International
Conference on Web Services (ICWS 2008 & 2007 & 2006). Her
current research interests center around services computing. She is a
member of the IEEE and ACM.

Rick C.S. Chen received the BS and MS
degrees from the Department of Computer and
Communication Engineering, National
Kaohsiung First University of Science and
Technology in June 2000 and June 2002,
respectively. He is currently a PhD student in
the Department of Computer Science and

Information Engineering, National Central University, Taiwan. His
research interests include content adaptation, expert systems, and
artificial intelligence.

Norman W.Y. Shao received his PhD degree
in Information Engineering from National
Kaohsiung First University of Science and
Technology, Taiwan in 2006. Dr. Shao is a
research engineer with the Naval Shipbuilding
Development Center. His research interests
include content management system, content

adaptation, and personalized knowledge design.

