
ETRI Journal, Volume 29, Number 6, December 2007 Hidehiro Kato et al. 769

This paper proposes a multiplication algorithm for Fpm,
which can be efficiently applied to many pairs of
characteristic p and extension degree m except for the case
that 8p divides m(p–1). It uses a special class of type-〈k, m〉
Gauss period normal bases. This algorithm has several
advantages: it is easily parallelized; Frobenius mapping is
easily carried out since its basis is a normal basis; its
calculation cost is clearly given; and it is sufficiently
practical and useful when parameters k and m are small.

Keywords: Extension field, public-key cryptosystem,
fast implementation, optimal extension field, optimal
normal basis.

Manuscript received Feb. 02, 2007; revised Aug. 16, 2007.
This work was supported by the Strategic Information and Communications R&D

Promotion Programme (SCOPE) from the Ministry of Internal Affairs and Communications of
Japan.

Hidehiro Kato (email: kato@trans.cne.okayama-u.ac.jp), Yasuyuki Nogami (phone: + 81 86
251 8128, email: nogami@cne.okayama-u.ac.jp), Tomoki Yoshida (email:
yoshida@trans.cne.okayama-u.ac.jp), and Yoshitaka Morikawa (email:
morikawa@cne.okayama-u.ac.jp) are with the Department of Communication Network
Engineering, Okayama University, Okayama, Japan.

I. Introduction

It is quite convenient to scalably change the security level of
cryptographies according to the performance of the device or
the importance of the information. If, for example, we would
like to realize a public key cryptography whose key length is
scalably changed, we need to prepare a certain definition field
whose arithmetic operations are also scalably carried out. The
target of this paper is public key cryptographies [1] and their
applications [2] whose definition field is a certain extension
field, Fpm, where p and m are the characteristic and extension
degree, respectively. As a recent cryptographic application,
pairing-based cryptography [1] also needs arithmetic
operations in such a large order extension field. For example, it
uses a 160-bit prime number and 6 as characteristic and
extension degree, respectively [1]. Using a special class of
type-〈k,m〉 Gauss period normal bases, for which km+1 must
be a prime number, this paper proposes a multiplication
algorithm which can be applied to many pairs of characteristic
p and extension degree m except for the following case:

).1(|8 −pmp (1)

According to Dirichlet’s theorem on arithmetic progressions
[3], for an arbitrary positive integer m, there is an infinite
number of k’s such that km+1 becomes a prime number. In the
case of (1), according to Gao [4], there exists a Gauss period
normal basis in Fpm. The authors also experimentally checked it
for many pairs of p and m. In this paper, we only deal with the
case that characteristic p is an odd prime number.

Constructing an efficient extension field Fpm, such as an
optimal extension field (OEF) [5] or Type I all-one polynomial
field (Type I AOPF) [6] generally requires a certain irreducible
polynomial of degree m over Fp. For example, since Type I

Cyclic Vector Multiplication Algorithm Based on a
Special Class of Gauss Period Normal Basis

 Hidehiro Kato, Yasuyuki Nogami, Tomoki Yoshida, and Yoshitaka Morikawa

770 Hidehiro Kato et al. ETRI Journal, Volume 29, Number 6, December 2007

AOPF adopts a certain normal basis in Fpm, characteristic p and
extension degree m must satisfy the conditions that m+1 is a
prime number and p is a primitive element in Fm+1, for which
the extension degree m must be even [6]. Moreover, in order to
implement fast arithmetic operations, some algorithms, such as
the Karatsuba method [7], the cyclic vector multiplication
algorithm (CVMA) [6], and the Itoh-Tsujii inversion algorithm
[8], will be additionally applied. If we cannot prepare such an
extension field, then we will consider an irreducible trinomial as
the modular polynomial of Fpm. Of course, an irreducible
trinomial does not exist for an arbitrary degree. Moreover,
polynomial modulo operations and Frobenius mapping will
become more time-consuming compared to those in OEF and
Type I AOPF. The multiplication algorithm proposed in this
paper is based on CVMA. Type I AOPF [6] and CVMA [6], [9]
have the following four advantages: the calculation of CVMA is
easily parallelized, Frobenius mapping in Type I AOPF is easily
carried out since its basis is a normal basis, its calculation cost is
clearly given, and it is sufficiently practical and useful when m is
small. However, they have the disadvantage that the extension
degree is restricted to be a certain even number, and
correspondingly, the characteristic is restricted.

Using a special class of type-〈k,m〉 Gauss period normal
bases, this paper proposes a multiplication algorithm for Fpm
which is applied to many pairs of characteristic p and extension
degree m except for the case of (1). This algorithm also has the
the previously outlined advantages. Moreover, it can eliminate
the disadvantage of extension degree restriction. The main idea
is that if we can prepare Type I AOPF Fpkm with a certain
number k, we have the objective extension field Fpm as its
subfield. In this paper, we call this subfield Fpm Type I extended
AOPF (Type I-X AOPF). In order to consider Type I AOPF
Fpkm, we need a positive integer k such that km+1 is a prime
number and p is a primitive element in Fkm+1 [6]. We simulated
many pairs of p and m. Such a positive integer k always existed
except for the case of (1). Thus, we can always prepare Type I-
X AOPF Fpm with a normal basis that is given as a special class
of Gauss period normal bases [1]. Of course, Frobenius
mapping does not need any arithmetic operations. The CVMA
in Type I AOPF Fpkm can be directly applied for its subfield
Type I-X AOPF Fpm; however, the calculation cost becomes
unnecessarily large corresponding to parameter k. Therefore,
the proposed multiplication algorithm is given by modifying
the CVMA of Type I AOPF Fpkm for Type I-X AOPF Fpm. After
that, the calculation cost of the proposed algorithm is evaluated
and experimental results are shown. These results demonstrate
that the proposed algorithm is sufficiently practical and useful
when parameters k and m are small.

Throughout this paper, #SADD and #SMUL denote the number
of additions and the number of multiplications, respectively. In

this paper, a subtraction in Fp is counted up as an addition in Fp.
The characteristic and extension degree are denoted by p and m,
respectively, where p is a prime number, Fpm denotes an m-th
extension field over Fp, and *

mp
F denotes the multiplicative

group in Fpm. Without any additional explanation, lower and
upper case letters show elements in the prime field and
extension field, respectively, and a Greek character shows a
zero of a modular polynomial.

II. Fundamentals

We briefly discuss extension fields, the Type I AOPF and the
CVMA [6].

1. Extension Fields

Some extension fields that have fast arithmetic operations
have been previously proposed, such as the OEF [5] and Type I
AOPF [6]. To implement fast arithmetic operations, the
parameters discussed in this subsection play important roles.

A. Modular Polynomial

In general, constructing an extension field Fpm requires an
irreducible polynomial of degree m over Fp. Using this
irreducible polynomial as the modular polynomial, arithmetic
operations such as multiplication are carried out. In particular, it
is said that binomials, trinomials, and all-one polynomials1) are
efficient for fast arithmetic operations.

In order to prepare a certain irreducible polynomial, although
irreducible binomials, trinomials, and all-one polynomials can be
easily obtained [5], [10], [11], several irreducibility tests are
generally needed until an irreducible polynomial is obtained. The
irreducibility test becomes more time-consuming as
characteristic p and extension degree m become larger. In
addition, an irreducible binomial, trinomial, and the all-one
polynomial of degree m over Fp do not exist for an arbitrary pair
of p and m. For example, an irreducible binomial of degree m
over Fp exists if, and only if, each prime factor of m divides p –1
and 4 (1)p − when 4 | m. The well-known OEF adopts an
irreducible binomial as the modular polynomial [5].

B. Basis

The extension field Fpm can be considered as a vector space
of degree m over Fp. We can pick up m linearly independent
elements in Fpm as a basis. Polynomial bases and normal
bases are well-known [11]. For example, a normal basis is
efficient for Frobenius mapping, pAA → , and a polynomial
basis is efficient for vector multiplication. An optimal normal

1) A polynomial whose coefficients are all one is called an all-one polynomial. For example,
)1/()1(1 −−+ xxm .

ETRI Journal, Volume 29, Number 6, December 2007 Hidehiro Kato et al. 771

basis (ONB) has efficiencies of both the normal basis and
polynomial basis [12]. A normal basis in Fpm consists of m
conjugate elements of a certain proper element in Fpm;
however, not every set of conjugate elements in Fpm forms a
normal basis [11]. Therefore, when we would like to use a
normal basis, we generally need to check whether the
conjugate elements form a normal basis. The well-known
Type I and Type II ONBs can be easily obtained; however,
these useful normal bases exist only when the extension
degree m is a certain even number and a certain number,
respectively [6], [9].

C. Algorithm

Among fundamental arithmetic operations in the extension
field, multiplication and inversion are especially time-
consuming. Therefore, for quick calculation, some algorithms,
such as the Karatsuba method [7] and Itoh-Tsujii inversion
algorithm [8], are applied. However, the Karatsuba method
requires a polynomial basis, and the Itoh-Tsujii algorithm and
Avanzi’s exponentiation method require fast Frobenius
mapping [13]. It is not easy to satisfy both requirements. The
OEF can satisfy them [5]; however, it is also restricted by other
conditions, such as characteristic p and extension degree m as
discussed in section II.1.A.

2. Type I All-One Polynomial Field

The Type I AOPF is an extension field Fpm whose extension
degree must be a certain even number [6]. The Type I AOPF
adopts the following modular polynomial and basis to
implement fast arithmetic operations.

Modular polynomial: all-one polynomial

),1/()1(1 −−+ xxm (2)

where it must be irreducible over Fp.
Basis: a pseudo-polynomial basis

 },,,,,{ 12 mm ωωωω − (3)

where ω is a zero of the modular polynomial.

The pseudo polynomial basis (3) is equivalent to the
following normal basis:

2 1

{ , , , , }.
mp p pω ω ω ω

−

 (4)

When p=2, it is specifically called a Type I ONB. It is
efficient for fast arithmetic operations in an extension field. In
the remainder of this paper, we call this normal basis (4) a
Type I ONB. The following conditions must be satisfied by

(xm+1–1)/(x–1) to be irreducible over Fp. First, m+1 must be a
prime number, and secondly, p must be a primitive element in
Fm+1. Accordingly, the extension degree m must be an even
number; therefore, Type I AOPFs cannot have odd prime
extension degrees. In Type I AOPF, we calculate a
multiplication and inversion by a cyclic vector multiplication
algorithm and the Itoh-Tsujii inversion algorithm,2)
respectively [8].

3. Cyclic Vector Multiplication Algorithm

CVMA [6] uses the following two relations:

1 21, 1,m mω ω ω ω+ = + + + = − (5)

where ω is a zero of (xm+1–1)/(x–1). That is, the modular
polynomial of Type I AOPF and the basis (3) consist of m
conjugate elements of ω as shown in (4). Let us consider two
vectors X and Y in Fpm, which are represented by (3) as

),,,,(),,,,(2121 mm yyyYxxxX == (6)

where pii Fyx ∈, , and .1≥≥ im
Suppose the product Z of X and Y as

),,,,(21 mzzzXYZ == (7)

where pi Fz ∈ (1≥≥ im). Noting that m is even because
m+1 is a prime number larger than 2, according to CVMA [6],
we calculate

,1111 22

2

1
22 ⎭

⎬
⎫

⎟
⎠
⎞

⎜
⎝
⎛ −

⎩
⎨
⎧

⋅⎟
⎠
⎞

⎜
⎝
⎛ −=

−+
=

−+ −−−−∑ sisi

m

s
sisii yyxxq (8a)

where 0≥≥ im . Then, we have the coefficient zi as

,1,0 ≥≥−= imqqz ii (8b)

where the subscript 〈⋅〉 means ⋅ mod (m + 1). When extension
degree m = 4, CVMA calculates

()() ()(),323241410 yyxxyyxxq −−+−−= (9a)

()(){ },11424201 yxyyxxqz +−−−= (9b)

()(){ },22434302 yxyyxxqz +−−−= (9c)

()(){ },33212103 yxyyxxqz +−−−= (9d)

()(){ }.44313104 yxyyxxqz +−−−= (9e)

2) Since AOPF adopts a normal basis, Frobenius mapping does not require any arithmetic

operations.

772 Hidehiro Kato et al. ETRI Journal, Volume 29, Number 6, December 2007

From (8a) and (9), we find that the terms xlyl,
ml ≤≤1 and),(/)(jiji yyxx −− mji ≤<≤1 appear in the

calculations of q〈l〉 and q〈i+j〉, respectively. It should be noted that
CVMA in Type I AOPF adopts the pseudo-polynomial basis (3).

Compared to the Karatsuba-based multiplication [5], [7], the
calculation cost for CVMA in Type I AOPF Fpm can be clearly
evaluated as given in [6] as

2

SMUL SADD
(1) 3 2# , # ,

2 2
m m m m+ − −

= = (10)

because CVMA is based on (8). In the Itoh-Tsujii inversion
algorithm, Frobenius mapping pAA → is required several
times. If the extension field adopts a normal basis such as Type
I AOPF, Frobenius mapping does not require any arithmetic
operations [6]. The calculation cost of the Karatsuba-based
multiplication is evaluated as 3log2# m=SMUL [7].

4. Problems in Previous Works

Most efficient extension fields Fpm, such as OEF and Type I
AOPF, restrict the modular polynomial by which the arithmetic
operations can be quickly carried out. Accordingly,
characteristic p and extension degree m are also restricted.
Granger and others [14] proposed an efficient multiplication in
an extension field; however, it works only when extension
degree m is divisible by 6. Even if we have an efficient
multiplication algorithm and software library, they are custom-
designed for the objective extension field in general; therefore,
it cannot be used for another extension field.3) These
restrictions narrow the efficiency and versatility of
cryptographic applications.

Avanzi and others [13] introduced processor adequate finite
fields (PAFFs) focused on the odd characteristic p<2w, where w
is some processor related word length. Arithmetic operations in
extension field Fpm can be implemented by using integer
operations within the word length. Moreover, [13] focuses on
exponentiations. Some cryptographic applications require
several exponantiations over the extension field, and the
exponents become quite large numbers, for which [13]
recommends the use of p-adic representation and Frobenius
mapping. The p-adic representation also contributes to keeping
within the word length. Then, if we need little calculation for
Frobenius mapping, the exponentiations can be quickly carried
out. As introduced in [13], OEF is one of the most efficient
PAFFs because Frobenius mapping is quickly carried out [5].
This paper picks up OEF as the competitor but does not restrict
the characteristic within the word length.

3) For another extension field, we need another multiplication program in order to be

similarly efficient.

III. Type I-X All-One Polynomial Field

As described in sections I and II, the well-known extension
fields Fpm OEF and AOPF are restricted by characteristic p,
extension degree m, and the modular polynomial. In this
section, using a special class of type-〈k,m〉 Gauss period normal
bases, we present a multiplication algorithm that can be applied
to many pairs of characteristic p and extension degree m except
for the case of (1), in which 8p divides m(p-1). It is efficient
when k and m are small.

1. Main Idea

Let the objective extension field be the m-th extension field
Fpm over the prime field Fp. If we can prepare the extension
field Fpkm as a Type I AOPF with a certain number k, as shown
in Fig. 1, we obtain the objective Fpm as its subfield. In addition,
we can use CVMA.

Here, we will briefly discuss the type-〈k,m〉 Gauss period
normal basis (GNB) defined as in [15] as follows.

Definition 1. Let km+1 be a prime number not equal to p.

Suppose that gcd(km/e,m) = 1, where e is the order of p modulo
km+1. Then, for any primitive k-th root θ of the unity in Fkm+1,

∑
−

=

=
1

0

k

i

iθβγ (11)

generates a normal basis },,,{
1−mpp γγγ in Fpm, whereβ is

a zero of)1/()1(1 −−+ xx mk . We call this normal basis type-
<k, m> Gauss period normal basis.

The following Type I eXtended normal basis (Type I-X NB)

is a special class of Gauss period normal bases.

Fig. 1. Image of the main idea.

Type I AOPF Fpkm

Type I ONB : 2 1{ , , , , }kmp p pω ω ω ω −

Type I-X AOPF Fpm
Type I-X NB :

1

{ , , , }
mp pγ γ γ

−

∑
−

=

+
=

1

0

k

j

pp ijmi
ωγ , 0≤i≤m-1

ETRI Journal, Volume 29, Number 6, December 2007 Hidehiro Kato et al. 773

2. Definition of Type I-X AOPF

We consider an extension field defined as follows.

Modular polynomial: all-one polynomial
1 1() (1),/mkx x+ − − (12)

where it must be irreducible over Fp.
Basis: a normal basis

},,,,{
1−mpp γγγ (13a)

where γ is defined by

,10,
1

0
∑

−

=

−≤≤=
+k

u

pp mi
umii

ωγ (13b)

where ω is a zero of the modular polynomial.

The relation of ω and γ is shown in Fig. 1. In the remainder of
this paper, we call the extension field defined here a Type I-X
AOPF. In addition, we call the normal basis (13a) Type I-X NB.
It is a special class of type-〈k,m〉 Gauss period normal bases.
Many studies about GNB have been carried out [16], [17]. Gao
[4] discussed the normal basis and the self dual normal basis in
detail. Nöcker [16] discussed how to efficiently implement
arithmetic operations in an extension field with GNB.

To prepare Type I-X NB (13a) as a special class of Gauss
period normal bases, the modular polynomial

)1/()1(1 −−+ xx mk needs to be irreducible over Fp. In other
words, this paper only considers the case for which the
following two conditions are satisfied: 1) km + 1 is a prime
number, and 2) p is a primitive element in Fkm+1. Of course,
parameter k is closely related to the calculation cost; therefore,
it is preferable for k to be the smallest among many k’s that
satisfies conditions 1 and 2. We consider these conditions

Fig. 2. Modified CVMA for Type I-X AOPF Fpm.

Input: .,
1

0

1

0
∑∑

−

=

−

=

==
m

i

p
i

m

i

p
i

ii
yYxX γγ

Output: ∑
−

=

==
1

0

m

i

p
i

i
zXYZ γ

Preparation:
1. Determine k such that Type I AOPF Fpkm exists.
2. For 0 ≤ i ≤ m, q[i] ← 0.
3. For 0 ≤ t ≤ m-1 and 0 ≤ h ≤ k -1, g[〈pt+hm〉] ← t + 1.
4. g[0] ← 0.

Procedure:
1: For 0 ≤ i ≤ m-1, q[i + 1] ← xi yi.
2: For 0 ≤ i < j ≤ m-1, {
3: M ← (xi – xj)(yi – yj),
4: For 0 ≤ h ≤ k-1, {
5: q [g[〈pi +pj+hm〉]]← q [g[〈pi +pj+hm〉]] + M.
6: }
7: }
8: For 0 ≤ i ≤ m-1, zi ← kq[0]-q[i + 1].

(End of algorithm)

because property 1 is shown based on the primitivity of p in
Fkm+1. Accordingly, the proposed algorithm shown in Fig. 2
efficiently uses the primitivity.

■ Vector Representation of an Element in Fpm

Consider an arbitrary element X in Type I-X AOPF Fpm
represented with Type I-X NB in Fpm as

() .,,,,, 1210

1

0
pim

m

i

p
i FxxxxxxX

i
∈== −

−

=
∑ γ (14)

Noting that ∑
−

=

=
1

0

k

j

p jm
ωγ , we also represent X in Type I-X

AOPF Fpm with Type I ONB in Fpkm as

()()
(

).,,,,

,,,,,
,,,,,

1210

1210

1210

1

0

1

−

−

−

−

=

−

=

+++= ∑

m

m

m

m

i

p
mkpp

i

xxxx

xxxx
xxxx

xX
i

m
ωωω

 (15)

Here, we use both vector representations of (14) and (15).

3. Remarks

According to Gao [4] and the following remarks, we can
construct the extension field Fpm as Type I-X AOPF for many
pairs of characteristic p and extension degree m except for the
case of (1).

Remark 1. For an arbitrary extension degree m, there is an
infinite number of k’s such that km+1 becomes a prime number.
It is well-known as the Dirichlet’s theorem on arithmetic
progressions [3].

Remark 2. From many experimental results, except for the
case of (1), there exist positive integer k’s such that 1) km+1 is a
prime number and 2) p is a primitive element in Fkm+1

4).
Remark 3. When (1) is satisfied, there is no positive integer

k that satisfies 1) km+1 is a prime number and 2) p is a
primitive element in Fkm+1.

Proof (Remark3). Let km+1 be a prime number and 8p
divide m(p–1). Consider the primitivity of the element p in
Fkm+1. Using Legendre symbol (a/b) and the well-known
quadratic reciprocity law [18], we have

()
()

,111
1

4
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−=⎟

⎠
⎞

⎜
⎝
⎛

+

−

pp
km

km
p pkm

 (16)

4) We examined many pairs of p and m; however, there were no counter examples.

Therefore, it will be available for almost every pair of p and m except for the case of (1). There
are ()kmφ primitive elements in F*km+1, where ()⋅φ is the Euler’s function.

774 Hidehiro Kato et al. ETRI Journal, Volume 29, Number 6, December 2007

where it is noted that 8p divides m(p-1). Consequently, p is not
a primitive element in Fkm+1. �

4. Original CVMA for Type I-X AOPF

If CVMA in Type I AOPF Fpkm is applied in the
multiplication of elements in Type I-X AOPF Fpm as it is, the
calculation cost becomes unnecessarily large. For example,
from (10), the number of Fp-multiplications required for a
multiplication in Fpkm becomes

() 2.1# += kmkmSMUL (17)

The appropriate cost for Type I-X AOPF Fpm will be

() 2.1# += mmSMUL (18)

Next, we modify the original CVMA in Type I AOPF Fpkm to
be efficiently applied in its subfield Type I-X AOPF Fpm. We
consider a multiplication of two elements in Type I-X AOPF
Fpm by modifying the CVMA in Type I AOPF Fpkm.

■ Modification of CVMA for Type I-X AOPF

,
1

0

1

0

1

0

1

0

1

0
∑∑∑ ∑∑

−

=

−

=

−

=

−

=

−

=

++

===
m

i

k

u

p
i

m

i

m

i

k

u

p
i

p
i

muimuii

xxxX ωωγ (19a)

∑∑∑ ∑∑
−

=

−

=

−

=

−

=

−

=

++

===
1

0

1

0

1

0

1

0

1

0
,

m

j

k

v

p
j

m

j

m

j

k

v

p
j

p
j

vmjmvjj

yyyY ωωγ (19b)

()

()(){ }

()()

() ,
1

0

2

10

10

1

0

2

10

1

0

2

10

1

0

1

0

∑∑∑

∑∑

∑

∑ ∑

∑∑∑

∑∑

−

=−≤<≤

+

−≤<≤

+

−

=

−≤<≤

+

−

=−≤<≤

+

−

=

−

=

+

+−+

−−−=

+

−−−−−=

++=

=

m

i

p
ii

mji

pp
jjii

mji

pp
jiji

m

i

p
ii

mji

pp
jjiijiji

m

i

p
ii

mji

pp
ijji

m

i

m

j

pp
ji

iji

ji

i

ji

iji

ji

yxyxyx

yyxx

yx

yxyxyyxx

yxyxyx

yxXY

γγ

γ

γ

γ

γγ

γ

(20)

0 1

1

0 1 0 1 0 0 1,

()

,

i j

i j i j i j

p p
i i j j

i j m

m
p p p p p p

i i j j i i
i j m i j m i j m i j

x y x y

x y x y x y

γ

γ γ γ γ

+

≤ < ≤ −

−
+ +

≤ < ≤ − ≤ < ≤ − = ≤ ≤ − ≠

+

⎛ ⎞
= + = ⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

 (21)

()()

()()

()() d)(22.

c)22())((

b)22(

a)22(

1

010

1

0

1

00 1

,10

1

0

10

1

0

1

0 ,10

10

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−−=

+−−−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

−−−=

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−−−=

∑∑∑

∑∑∑ ∑

∑∑

∑∑

∑∑ ∑

∑∑

−

=−≤<≤

+

−

=

−

=

+

<≤ −≤

≠−≤≤

−

=

−≤<≤

+

−

=

+
−

= ≠−≤≤

−≤<≤

+

iji

jiji

iji

ji

jiji

ji

p
i

m

i
i

mji

pp
jiji

m

j

pp
i

m

i
i

pp
jiji

ji m

jimj

ppp
i

m

i
i

mji

pp
jiji

m

i

pp
ii

m

i jimj

pp
ii

mji

pp
jiji

yxyyxx

yxyyxx

yx

yyxx

yxyx

yyxxXY

γγ

γγγ

γγγ

γ

γγγ

γ

Consider the multiplication of two elements X and Y in
Type I-X AOPF Fpm shown in (19), where 〈⋅〉 denotes ⋅ mod
km+1. This multiplication is calculated as (20). Using (21),
we have (22). From (22c) to (22d), we use the following
relation:

∑ ∑∑
−

=

−

=

−

=

−==
+1

0

1

0

1

0
.1

m

j

m

j

k

v

pp vmjj
ωγ (23)

Here, we use the following property.

Property 1.

()
.10,

1

0

,,
−≤<≤= ∑

−

=

+ mji
k

h

ppp hjigji
γγ (24a)

()hjigp ,,
γ is given as

() ()
⎪⎩

⎪
⎨
⎧

+=

=+++++−
=

+

+
−−

.otherwise,thatsuch

,0when,
21

,,

hmjitp

hmjippp

p

ppp

ppk
t

mm

hjig

γ

γγγγ
γ

 (24b)

See appendix for its proof. Based on (22d) and the above
property, we propose a multiplication algorithm in Type I-X
AOPF Fpm as shown in Fig. 2. In the algorithm, lines 1 and 5
correspond to the calculation of (22d). Multiplying the scalar k
at line 8 corresponds to the former condition of (24b). In
property 1 and the proposed algorithm shown in Fig. 2, the
primitivity of p in Fkm+1 is efficiently used.

Unlike the algorithms in [16] and [17], our proposed
algorithm is quite simple; therefore, the calculation cost is
clearly given. Moreover, it is adaptable enough for changing
characteristic p and extension degree m. In particular, when the
extension degree m is small, it is quite efficient.

ETRI Journal, Volume 29, Number 6, December 2007 Hidehiro Kato et al. 775

IV. Cost Evaluation and Comparison

1. Cost Evaluation

As shown in Fig. 2, the proposed algorithm requires the
calculation of the indexes such as 〈pi+pj+hm〉; however, the
indexes can be computed prior to calculation when the
extension degree m is small. Then, we can directly write the
program with the calculated indexes. Thus, the calculation cost
for these indexes is not taken into account in this paper.

According to section III.4 and Fig. 2, the proposed algorithm
requires the following calculation cost:

() ,1
2

1# +
+

=
mm

SMUL (25a)

()() .
2

21# mkmm
+

+−
=SADD (25b)

The “+1” in (25a) corresponds to kq[0] at line 8 in the
proposed algorithm. When k=1, this multiplication is not
needed. In addition, when k is small, kq[0] can be calculated
with (k–1) additions. For example, 3q[0]=q[0]+q[0]+q[0]. In
Table 1, #SADD is evaluated with such additions.

Compared to (10), #SMUL is almost the same, and #SADD is
about k times larger. As previously discussed, it is preferable for
parameter k to be small. When k=1, it is a Type I AOPF [6],
and when k=2, it is a Type II AOPF [9].

2. Comparison

We checked the smallest parameter k for 10,000 160-bit
prime numbers as characteristic p, in which the extension
degree m was fixed at 6. From the experimental result, the
average of the smallest k was 3.73. Moreover, for about 70% of
the prime numbers, k was equal to or less than 3. Therefore, we
consider 3≤k . For example, let us consider the case in which
the modular polynomial is an irreducible trinomial:

.,,6
pFbabaxx ∈++ (26)

Using the Karatsuba method [5], the calculation cost for a
multiplication with the modular polynomial (26) becomes

.69#,28# == SADDSMUL (27)

On the other hand, when k=3, that in Type I-X AOPF Fp6
needs

#SMUL= 21, #SADD = 83. (28)

Table 1 shows the comparison of the calculation cost
required for a multiplication in Fpm. Since it is necessary in
Type I-X AOPF Fpm for km + 1 to be a prime number, as shown
in the table, there is no data when k and m are both odd

Table 1. Comparison of the calculation cost for a multiplication in Fpm.

Extension degree m
Extension field Fpm

3 4 5 6

General type OEF (8,15) (12,27) (19,42) (23,64)

Type II OEF (6,17) (9,30) (15,46) (15,46)

Irreducible trinomial (10,17) (15,30) (23,46) (28,69)

k=1 - (10,22) - (21,51)

k=2 (6,16) - (15,46) (21,67) Type I-X AOPF

k=3 - (10,36) - (21,83)

 Remark : From the left hand side in the parenthesis, the numbers show #SMUL and
#SADD, respectively.

Table 2. Computation time for a multiplication in Fpm (µs).

Extension degree m
Extension field Fpm

3 4 5 6

General type OEF 6.37 9.77 15.6 20.2

Type II OEF 6.01 9.16 14.9 19.2

Irreducible trinomial 7.50 11.5 17.9 22.8

k=1 - 9.65 - 20.7

k=2 5.94 - 15.4 21.6 Type I-X AOPF

k=3 - 10.6 - 22.6

 Remark : The authors used Pentium 4 (3.6 GHz), C++ programming language, and
NTL [19]. The characteristic p was a 160-bit prime.

numbers. From this comparison, we find that Type I-X AOPF
achieves an efficiency almost as high as that of OEF. Moreover,
Type I-X AOPF Fpm can be constructed for many pairs of
characteristic p and extension degree m except for the case of (1).

Table 2 shows the average computation time for a
multiplication in Type I-X AOPF Fpm. We used Pentium 4 (3.6
GHz), C++ programming language, and NTL [19]. As
characteristic p, we used a 160-bit prime number such that
there were irreducible trinomials, and OEF and Type II OEF
could be constructed. From Table 2, it can be concluded that
Type I-X AOPF is practical enough for small extension degrees
and small k.

3. Application

In general, it is said that the security level of public key
cryptography increases as the size of the definition field
increases5). If we can easily and seamlessly change the size of
the definition field, we can realize variable key-length public
key cryptography. Type I-X AOPF is useful for this. For
example, fix characteristic p to a certain 32-bit prime

5) Of course, if there are any other conditions from the viewpoint of security, the definition
field should be selected such that those conditions are satisfied.

776 Hidehiro Kato et al. ETRI Journal, Volume 29, Number 6, December 2007

Fig. 3. Maximum, minimum, and average of the smallest k’s for
Type I-X NB in Fpm when log2 p ≈32.

5 10 15 20 25 30

20

40

60

80

100

120

140

160
Log2 p≈32

: Average value

Extension degree m

P
ar

am
et

er
 k

Fig. 4. Maximum, minimum, and average of the smallest k’s for
Type I-X NB in Fpm when log2 p ≈160.

5 10 15 20 25 30

160

140

120

100

80

60

40

20

Extension degree m

P
ar

am
et

er
 k

Log2 p≈160
: Average value

number, then change the extension degree m. As previously
shown, it is easy to change the extension degree m for the
proposed algorithm in Fig. 2, though parameter k will be
correspondingly changed. By changing m, the size of the
definition field Fpm is changed. Accordingly the key-length is
changed. When the size of characteristic p is 32 bits, we can
change the key-length by every 32 bits. Some conventional
methods such as OEF and irreducible trinomial-based
extension fields cannot be easily treated in this way. When we
use extension fields for elliptic curve cryptography, we must
pay attention to several attacks, such as FR reduction [20] and
the Weil descent attack [21].

On the other hand, for the proposed method, it is preferable
for k and m to be small. It is especially preferable for parameter
k to be small because #SADD depends on k as shown in (25b).
For 1,000 32-bit prime numbers as characteristic p, the authors
measured the maximum, minimum, and average of parameter

Fig. 5. Distribution of the smallest k’s for Type I-X NB in Fpm

when m = 3, 4, 5, 6 and log2 p ≈160.

5
10

15
20 3

4

5

6

m
k

0

10

20

30

40

50
(%)

k’s such that Type I-X NB exists in Fpm. Figure 3 shows the
result. Figure 4 shows the result for 1,000 160-bit prime
numbers, and Fig. 5 shows the distribution of the smallest k’s
for 10,000 160-bit prime numbers. As discussed in section I,
pairing-based cryptography uses a 160-bit prime number and 6
as characteristic and extension degree [1], respectively.
When log2 p ≈ 160 and m=6, the maximum, minimum, and
average were 37, 1, and 3.73, respectively. Moreover, for about
70% of the prime numbers, k was equal to or less than 3. Thus,
the proposed method is useful for scalably changing m;
however, it should be noted that the calculation cost increases
as k and m increase.

V. Conclusion

This paper proposed a multiplication algorithm for Fpm which
was efficiently applied to many pairs of characteristic p and
extension degree m except for the case in which 8p divided
m(p–1). This algorithm uses a special class of type-〈k, m〉
Gauss period normal bases and has several advantages. It is
easily parallelized, Frobenius mapping is easily carried out
since its basis is a normal basis, its calculation cost is clearly
given, and it is sufficiently practical and useful when k and m
are small. As a future work, we would like to develop a
multiplication algorithm that can support all kinds of Gauss
period normal bases.

Appendix. Proof of Property 1

Let 10 −≤<≤ mji . According to the relation between γ
and ω, we have

.
1

0

1

0

1

0

1

0
∑∑∑∑

−

=

−

=

+
−

=

−

=

+ ++++
=⋅=

k

u

k

v

pp
k

v

p
k

u

ppp vmjumivmjumiji
ωωωγ (A1)

If we set h=v–u, we have

ETRI Journal, Volume 29, Number 6, December 2007 Hidehiro Kato et al. 777

() .
1

0

1

0
∑∑

−

=

−

=

++ +
=

k

u

pk

h

pppp
um

mhjiji
ωγ (A2)

When 0=+ +hmji pp ,

() .
1

0

0
1

0
k

k

u

pk

u

pp
mu

hmji
== ∑∑

−

=

−

=

+ +
ωω (A3)

Since 1
21

−=++++
−−

γγγγ ppp mm
, we have

().21
γγγγ ++++−=

−− ppp mm
kk (A4)

On the other hand, when 0≠+ +hmji pp , since p is a
primitive element in Fkm+1, we can uniquely determine

10 −≤≤ mt , which satisfies the following relation:

() ()∑∑
−

=

−

=

+ =
+ 1

0

1

0

k

u

p
p

k

u

p
pp

um
t

um
hmji

ωω (A5a)

.
1

0
∑

−

=

+
=

k

u

p umt
ω (A5b)

From (13b),

.
1

0

tumt p
k

u

p γω =∑
−

=

+
 (A6)

It is noted that the parameter t is uniquely determined from i,
j, and h. Consequently, we have property 1.

References

[1] H. Cohen and G. Frey, Handbook of Elliptic and Hyperelliptic
Curve Cryptography, Discrete Mathematics and Its Applications,
Chapman & Hall CRC, 2005, pp. 280-285, p. 458.

[2] P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient Algorithms
for Pairing-Based Cryptosystems,” Proc. Crypto, LNCS 2442,
2002, pp. 354-368.

[3] T. Apostol, Introduction to Analytic Number Theory, Springer-
Verlag, 1976.

[4] S. Gao, “Normal Bases over Finite Fields,” Doctoral thesis,
Waterloo, Ontario, Canada, 1993.

[5] D. Bailey and C. Paar, “Optimal Extension Fields for Fast
Arithmetic in Public-Key Algorithms,” Proc. Crypto., LNCS
1462, 1998, pp. 472-485.

[6] Y. Nogami, A. Saito, and Y. Morikawa, “Finite Extension Field
with Modulus of All-One Polynomial and Representation of Its
Elements for Fast Arithmetic Operations,” IEICE Trans., vol.
E86-A, no. 9, 2003, pp.2376-2387.

[7] D. Knuth, The Art of Computer Programming, vol. 2, Semi-

numerical Algorithms, Addison-Wesley, 1981.
[8] T. Itoh and S.Tsujii, “A Fast Algorithm for Computing

Multiplicative Inverses in GF(2m) Using Normal Bases,” Inf. and
Comp., vol. 78, 1988, pp. 171-177.

[9] Y. Nogami, S. Shinonaga, and Y. Morikawa, “Fast
Implementation of Extension Fields with Type II ONB and
Cyclic Vector Multiplication Algorithm,” IEICE Trans.
Fundamentals, vol. E88-A, no. 5, 2005, pp. 1200-1208.

[10] T. Sugimura and Y. Suetsugu, “Consideration on Cyclotomic
Polynomials,” Trans. IEICE, vol. J73-A, 1990, pp. 1929-1935.

[11] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of
Mathematics and Its Applications, Cambridge University Press,
1984.

[12] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in
Cryptography, LNS 265, Cambridge Univ. Press, 1999.

[13] R. Avanzi and P. Mihailescu, “Generic Efficient Arithmetic
Algorithms for PAFFs (Processor Adequate Finite Fields) and
Related Algebraic Structures,” Proc. SAC, LNCS 3006, Springer-
Verlag, LNCS, 2003, pp. 320-334.

[14] R. Granger, D. Page, and N.P. Smart, “High Security Pairing-
Based Cryptography Revisited,” available at http://eprint.iacr.
org/2006/059.pdf, 2006.

[15] A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer
Academic Publishers, 1993.

[16] M. Nöcker, “Data Structures for Parallel Exponentiation in Finite
Fields,” available at http://deposit.ddb.de/, 2001.

[17] S. Gao, J. Gathen, D. Panario, and V. Shoup, “Algorithms for
Exponentiation in Finite Fields,” J. Symb. Comput. vol. 29, no. 6,
2000, pp. 879-889.

[18] E. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968.
[19] A Library for doing Number Theory, http://www.shoup.net/ntl/
[20] G. Frey, M. Muller, and H.G. Ruck, “The Tate Pairing and the

Discrete Logarithm Applied to Elliptic Curve Cryptosystems,”
IEEE Trans. Inform. Theory, vol. 45 no. 5, 1999, pp. 1717-1719.

[21] S.D. Galbraith and N.P. Smart, “A Cryptographic Application of
Weil Descent,” Proc. of Cryptography and Coding, Springer
LNCS 1746, 1999, pp. 191-200.

Hidehiro Kato graduated from Okayama
University in 2005 and obtained the MS degree
in 2006. He is now a doctoral candidate of the
Graduate School of Natural Science and
Technology, Okayama University. He is
studying finite field theory, especially the
implementation of fast arithmetic operations in a

finite field. He is a member of IEICE.

778 Hidehiro Kato et al. ETRI Journal, Volume 29, Number 6, December 2007

Yasuyuki Nogami graduated from Shinshu
University in 1994 and received the PhD degree
in 1999 from Shinshu University. He is now a
research associate of Okayama University. His
main fields of research are finite field theory and
its applications. He is a member of IEICE and
IEEE.

Tomoki Yoshida graduated from the
Department of Communication Network
Engineering, the Faculty of Engineering,
Okayama University, in 2006. He is now with
the Graduate School of Natural Science and
Technology, Okayama University, where he is
studying finite field theory.

Yoshitaka Morikawa graduated from the
Department of Electronic Engineering, Osaka
University in 1969, and obtained the MS degree
in 1971. He then joined Matsushita Electric,
where he engaged in research on data
transmission. In 1972, he became a research
associate at Okayama University, and

subsequently became an associate professor in 1985. He is now a
professor of the Department of Communication Network Engineering.
He has been engaged in research on image information processing. He
holds a DEng degree.

