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This paper proposes a multiplication algorithm for Fpm, 
which can be efficiently applied to many pairs of 
characteristic p and extension degree m except for the case 
that 8p divides m(p–1). It uses a special class of type-〈k, m〉 
Gauss period normal bases. This algorithm has several 
advantages: it is easily parallelized; Frobenius mapping is 
easily carried out since its basis is a normal basis; its 
calculation cost is clearly given; and it is sufficiently 
practical and useful when parameters k and m are small. 
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I. Introduction 

It is quite convenient to scalably change the security level of 
cryptographies according to the performance of the device or 
the importance of the information. If, for example, we would 
like to realize a public key cryptography whose key length is 
scalably changed, we need to prepare a certain definition field 
whose arithmetic operations are also scalably carried out. The 
target of this paper is public key cryptographies [1] and their 
applications [2] whose definition field is a certain extension 
field, Fpm, where p and m are the characteristic and extension 
degree, respectively. As a recent cryptographic application, 
pairing-based cryptography [1] also needs arithmetic 
operations in such a large order extension field. For example, it 
uses a 160-bit prime number and 6 as characteristic and 
extension degree, respectively [1]. Using a special class of 
type-〈k,m〉 Gauss period normal bases, for which km+1 must 
be a prime number, this paper proposes a multiplication 
algorithm which can be applied to many pairs of characteristic 
p and extension degree m except for the following case: 

).1(|8 −pmp                (1) 

According to Dirichlet’s theorem on arithmetic progressions 
[3], for an arbitrary positive integer m, there is an infinite 
number of k’s such that km+1 becomes a prime number. In the 
case of (1), according to Gao [4], there exists a Gauss period 
normal basis in Fpm. The authors also experimentally checked it 
for many pairs of p and m. In this paper, we only deal with the 
case that characteristic p is an odd prime number. 

Constructing an efficient extension field Fpm, such as an 
optimal extension field (OEF) [5] or Type I all-one polynomial 
field (Type I AOPF) [6] generally requires a certain irreducible 
polynomial of degree m over Fp. For example, since Type I 
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AOPF adopts a certain normal basis in Fpm, characteristic p and 
extension degree m must satisfy the conditions that m+1 is a 
prime number and p is a primitive element in Fm+1, for which 
the extension degree m must be even [6]. Moreover, in order to 
implement fast arithmetic operations, some algorithms, such as 
the Karatsuba method [7], the cyclic vector multiplication 
algorithm (CVMA) [6], and the Itoh-Tsujii inversion algorithm 
[8], will be additionally applied. If we cannot prepare such an 
extension field, then we will consider an irreducible trinomial as 
the modular polynomial of Fpm. Of course, an irreducible 
trinomial does not exist for an arbitrary degree. Moreover, 
polynomial modulo operations and Frobenius mapping will 
become more time-consuming compared to those in OEF and 
Type I AOPF. The multiplication algorithm proposed in this 
paper is based on CVMA. Type I AOPF [6] and CVMA [6], [9] 
have the following four advantages: the calculation of CVMA is 
easily parallelized, Frobenius mapping in Type I AOPF is easily 
carried out since its basis is a normal basis, its calculation cost is 
clearly given, and it is sufficiently practical and useful when m is 
small. However, they have the disadvantage that the extension 
degree is restricted to be a certain even number, and 
correspondingly, the characteristic is restricted. 

Using a special class of type-〈k,m〉 Gauss period normal 
bases, this paper proposes a multiplication algorithm for Fpm 
which is applied to many pairs of characteristic p and extension 
degree m except for the case of (1). This algorithm also has the 
the previously outlined advantages. Moreover, it can eliminate 
the disadvantage of extension degree restriction. The main idea 
is that if we can prepare Type I AOPF Fpkm with a certain 
number k, we have the objective extension field Fpm as its 
subfield. In this paper, we call this subfield Fpm Type I extended 
AOPF (Type I-X AOPF). In order to consider Type I AOPF 
Fpkm, we need a positive integer k such that km+1 is a prime 
number and p is a primitive element in Fkm+1 [6]. We simulated 
many pairs of p and m. Such a positive integer k always existed 
except for the case of (1). Thus, we can always prepare Type I-
X AOPF Fpm with a normal basis that is given as a special class 
of Gauss period normal bases [1]. Of course, Frobenius 
mapping does not need any arithmetic operations. The CVMA 
in Type I AOPF Fpkm can be directly applied for its subfield 
Type I-X AOPF Fpm; however, the calculation cost becomes 
unnecessarily large corresponding to parameter k. Therefore, 
the proposed multiplication algorithm is given by modifying 
the CVMA of Type I AOPF Fpkm for Type I-X AOPF Fpm. After 
that, the calculation cost of the proposed algorithm is evaluated 
and experimental results are shown. These results demonstrate 
that the proposed algorithm is sufficiently practical and useful 
when parameters k and m are small. 

Throughout this paper, #SADD and #SMUL denote the number 
of additions and the number of multiplications, respectively. In 

this paper, a subtraction in Fp is counted up as an addition in Fp. 
The characteristic and extension degree are denoted by p and m, 
respectively, where p is a prime number, Fpm denotes an m-th 
extension field over Fp, and *

mp
F denotes the multiplicative 

group in Fpm. Without any additional explanation, lower and 
upper case letters show elements in the prime field and 
extension field, respectively, and a Greek character shows a 
zero of a modular polynomial. 

II. Fundamentals 

We briefly discuss extension fields, the Type I AOPF and the 
CVMA [6]. 

1. Extension Fields 

Some extension fields that have fast arithmetic operations 
have been previously proposed, such as the OEF [5] and Type I 
AOPF [6]. To implement fast arithmetic operations, the 
parameters discussed in this subsection play important roles. 

A. Modular Polynomial 

In general, constructing an extension field Fpm requires an 
irreducible polynomial of degree m over Fp. Using this 
irreducible polynomial as the modular polynomial, arithmetic 
operations such as multiplication are carried out. In particular, it 
is said that binomials, trinomials, and all-one polynomials1) are 
efficient for fast arithmetic operations. 

In order to prepare a certain irreducible polynomial, although 
irreducible binomials, trinomials, and all-one polynomials can be 
easily obtained [5], [10], [11], several irreducibility tests are 
generally needed until an irreducible polynomial is obtained. The 
irreducibility test becomes more time-consuming as 
characteristic p and extension degree m become larger. In 
addition, an irreducible binomial, trinomial, and the all-one 
polynomial of degree m over Fp do not exist for an arbitrary pair 
of p and m. For example, an irreducible binomial of degree m 
over Fp exists if, and only if, each prime factor of m divides p –1 
and 4 ( 1)p − when 4 | m. The well-known OEF adopts an 
irreducible binomial as the modular polynomial [5]. 

B. Basis 

The extension field Fpm can be considered as a vector space 
of degree m over Fp. We can pick up m linearly independent 
elements in Fpm as a basis. Polynomial bases and normal 
bases are well-known [11]. For example, a normal basis is 
efficient for Frobenius mapping, pAA → , and a polynomial 
basis is efficient for vector multiplication. An optimal normal 
                                                               

1) A polynomial whose coefficients are all one is called an all-one polynomial. For example, 
)1/()1( 1 −−+ xxm . 
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basis (ONB) has efficiencies of both the normal basis and 
polynomial basis [12]. A normal basis in Fpm consists of m 
conjugate elements of a certain proper element in Fpm; 
however, not every set of conjugate elements in Fpm forms a 
normal basis [11]. Therefore, when we would like to use a 
normal basis, we generally need to check whether the 
conjugate elements form a normal basis. The well-known 
Type I and Type II ONBs can be easily obtained; however, 
these useful normal bases exist only when the extension 
degree m is a certain even number and a certain number, 
respectively [6], [9]. 

C. Algorithm 

Among fundamental arithmetic operations in the extension 
field, multiplication and inversion are especially time-
consuming. Therefore, for quick calculation, some algorithms, 
such as the Karatsuba method [7] and Itoh-Tsujii inversion 
algorithm [8], are applied. However, the Karatsuba method 
requires a polynomial basis, and the Itoh-Tsujii algorithm and 
Avanzi’s exponentiation method require fast Frobenius 
mapping [13]. It is not easy to satisfy both requirements. The 
OEF can satisfy them [5]; however, it is also restricted by other 
conditions, such as characteristic p and extension degree m as 
discussed in section II.1.A. 

2. Type I All-One Polynomial Field 

The Type I AOPF is an extension field Fpm whose extension 
degree must be a certain even number [6]. The Type I AOPF 
adopts the following modular polynomial and basis to 
implement fast arithmetic operations. 

 
Modular polynomial: all-one polynomial 

),1/()1( 1 −−+ xxm                 (2) 

where it must be irreducible over Fp. 
Basis: a pseudo-polynomial basis 

 },,,,,{ 12 mm ωωωω −             (3) 

where ω is a zero of the modular polynomial. 
 

The pseudo polynomial basis (3) is equivalent to the 
following normal basis: 

2 1

{ , , , , }.
mp p pω ω ω ω

−

              (4) 

When p=2, it is specifically called a Type I ONB. It is 
efficient for fast arithmetic operations in an extension field. In 
the remainder of this paper, we call this normal basis (4) a 
Type I ONB. The following conditions must be satisfied by    

(xm+1–1)/(x–1) to be irreducible over Fp. First, m+1 must be a 
prime number, and secondly, p must be a primitive element in 
Fm+1. Accordingly, the extension degree m must be an even 
number; therefore, Type I AOPFs cannot have odd prime 
extension degrees. In Type I AOPF, we calculate a 
multiplication and inversion by a cyclic vector multiplication 
algorithm and the Itoh-Tsujii inversion algorithm,2) 
respectively [8]. 

3. Cyclic Vector Multiplication Algorithm  

CVMA [6] uses the following two relations: 

1 21, 1,m mω ω ω ω+ = + + + = −          (5) 

where ω is a zero of (xm+1–1)/(x–1). That is, the modular 
polynomial of Type I AOPF and the basis (3) consist of m 
conjugate elements of ω as shown in (4). Let us consider two 
vectors X and Y in Fpm, which are represented by (3) as 

),,,,(),,,,( 2121 mm yyyYxxxX ==       (6) 

where pii Fyx ∈, , and .1≥≥ im  
Suppose the product Z of X and Y as  

),,,,( 21 mzzzXYZ ==           (7) 

where pi Fz ∈ ( 1≥≥ im ). Noting that m is even because 
m+1 is a prime number larger than 2, according to CVMA [6], 
we calculate 

,1111 22
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where 0≥≥ im . Then, we have the coefficient zi as 

,1,0 ≥≥−= imqqz ii            (8b) 

where the subscript 〈⋅〉 means ⋅ mod (m + 1). When extension 
degree m = 4, CVMA calculates 

( )( ) ( )( ),323241410 yyxxyyxxq −−+−−=       (9a) 

( )( ){ },11424201 yxyyxxqz +−−−=           (9b) 

( )( ){ },22434302 yxyyxxqz +−−−=           (9c) 

( )( ){ },33212103 yxyyxxqz +−−−=           (9d) 

( )( ){ }.44313104 yxyyxxqz +−−−=           (9e) 

                                                               
2) Since AOPF adopts a normal basis, Frobenius mapping does not require any arithmetic 

operations. 
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From (8a) and (9), we find that the terms xlyl, 
ml ≤≤1 and ),(/)( jiji yyxx −− mji ≤<≤1 appear in the 

calculations of q〈l〉 and q〈i+j〉, respectively. It should be noted that 
CVMA in Type I AOPF adopts the pseudo-polynomial basis (3). 

Compared to the Karatsuba-based multiplication [5], [7], the 
calculation cost for CVMA in Type I AOPF Fpm can be clearly 
evaluated as given in [6] as 

2

SMUL SADD
( 1) 3 2# , # ,

2 2
m m m m+ − −

= =       (10) 

because CVMA is based on (8). In the Itoh-Tsujii inversion 
algorithm, Frobenius mapping pAA → is required several 
times. If the extension field adopts a normal basis such as Type 
I AOPF, Frobenius mapping does not require any arithmetic 
operations [6]. The calculation cost of the Karatsuba-based 
multiplication is evaluated as 3log2# m=SMUL  [7]. 

4. Problems in Previous Works 

Most efficient extension fields Fpm, such as OEF and Type I 
AOPF, restrict the modular polynomial by which the arithmetic 
operations can be quickly carried out. Accordingly, 
characteristic p and extension degree m are also restricted. 
Granger and others [14] proposed an efficient multiplication in 
an extension field; however, it works only when extension 
degree m is divisible by 6. Even if we have an efficient 
multiplication algorithm and software library, they are custom-
designed for the objective extension field in general; therefore, 
it cannot be used for another extension field.3) These 
restrictions narrow the efficiency and versatility of 
cryptographic applications. 

Avanzi and others [13] introduced processor adequate finite 
fields (PAFFs) focused on the odd characteristic p<2w, where w 
is some processor related word length. Arithmetic operations in 
extension field Fpm can be implemented by using integer 
operations within the word length. Moreover, [13] focuses on 
exponentiations. Some cryptographic applications require 
several exponantiations over the extension field, and the 
exponents become quite large numbers, for which [13] 
recommends the use of p-adic representation and Frobenius 
mapping. The p-adic representation also contributes to keeping 
within the word length. Then, if we need little calculation for 
Frobenius mapping, the exponentiations can be quickly carried 
out. As introduced in [13], OEF is one of the most efficient 
PAFFs because Frobenius mapping is quickly carried out [5]. 
This paper picks up OEF as the competitor but does not restrict 
the characteristic within the word length. 

                                                               
3) For another extension field, we need another multiplication program in order to be 

similarly efficient. 

III. Type I-X All-One Polynomial Field 

As described in sections I and II, the well-known extension 
fields Fpm OEF and AOPF are restricted by characteristic p, 
extension degree m, and the modular polynomial. In this 
section, using a special class of type-〈k,m〉 Gauss period normal 
bases, we present a multiplication algorithm that can be applied 
to many pairs of characteristic p and extension degree m except 
for the case of (1), in which 8p divides m(p-1). It is efficient 
when k and m are small. 

1. Main Idea 

Let the objective extension field be the m-th extension field 
Fpm over the prime field Fp. If we can prepare the extension 
field Fpkm as a Type I AOPF with a certain number k, as shown 
in Fig. 1, we obtain the objective Fpm as its subfield. In addition, 
we can use CVMA. 

Here, we will briefly discuss the type-〈k,m〉 Gauss period 
normal basis (GNB) defined as in [15] as follows. 

 
Definition 1. Let km+1 be a prime number not equal to p. 

Suppose that gcd(km/e,m) = 1, where e is the order of p modulo 
km+1. Then, for any primitive k-th root θ of the unity in Fkm+1, 

∑
−

=

=
1

0

k

i

iθβγ                   (11) 

generates a normal basis },,,{
1−mpp γγγ  in Fpm, whereβ  is 

a zero of )1/()1( 1 −−+ xx mk . We call this normal basis type- 
<k, m> Gauss period normal basis.  

 
The following Type I eXtended normal basis (Type I-X NB) 

is a special class of Gauss period normal bases. 
 

 

Fig. 1. Image of the main idea. 
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2. Definition of Type I-X AOPF 

We consider an extension field defined as follows. 

Modular polynomial: all-one polynomial 
1 1( ) ( 1),/mkx x+ − −            (12) 

where it must be irreducible over Fp. 
Basis: a normal basis 

},,,,{
1−mpp γγγ                 (13a) 

where γ is defined by 

,10,
1

0
∑

−

=

−≤≤=
+k

u

pp mi
umii

ωγ         (13b) 

where ω is a zero of the modular polynomial. 

The relation of ω and γ is shown in Fig. 1. In the remainder of 
this paper, we call the extension field defined here a Type I-X 
AOPF. In addition, we call the normal basis (13a) Type I-X NB. 
It is a special class of type-〈k,m〉 Gauss period normal bases. 
Many studies about GNB have been carried out [16], [17]. Gao 
[4] discussed the normal basis and the self dual normal basis in 
detail. Nöcker [16] discussed how to efficiently implement 
arithmetic operations in an extension field with GNB. 

To prepare Type I-X NB (13a) as a special class of Gauss 
period normal bases, the modular polynomial 

)1/()1( 1 −−+ xx mk  needs to be irreducible over Fp. In other 
words, this paper only considers the case for which the 
following two conditions are satisfied: 1) km + 1 is a prime 
number, and 2) p is a primitive element in Fkm+1. Of course, 
parameter k is closely related to the calculation cost; therefore, 
it is preferable for k to be the smallest among many k’s that 
satisfies conditions 1 and 2. We consider these conditions 
 

 

Fig. 2. Modified CVMA for Type I-X AOPF Fpm. 
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Preparation: 
1. Determine k such that Type I AOPF Fpkm exists. 
2. For 0 ≤ i ≤ m, q[i] ← 0. 
3. For 0 ≤ t ≤ m-1 and 0 ≤ h ≤ k -1, g[〈pt+hm〉] ← t + 1. 
4. g[0] ← 0. 

Procedure: 
1: For 0 ≤ i ≤ m-1, q[i + 1] ← xi yi. 
2: For 0 ≤ i < j ≤ m-1, { 
3:  M ← (xi – xj)(yi – yj), 
4:  For 0 ≤ h ≤ k-1, { 
5:   q [g[〈pi +pj+hm〉]]← q [g[〈pi +pj+hm〉]] + M. 
6:  } 
7: } 
8: For 0 ≤ i ≤ m-1, zi ← kq[0]-q[i + 1]. 

(End of algorithm)
 

 

because property 1 is shown based on the primitivity of p in 
Fkm+1. Accordingly, the proposed algorithm shown in Fig. 2 
efficiently uses the primitivity. 

■ Vector Representation of an Element in Fpm 

Consider an arbitrary element X in Type I-X AOPF Fpm 
represented with Type I-X NB in Fpm as 
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AOPF Fpm with Type I ONB in Fpkm as 
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Here, we use both vector representations of (14) and (15).  

3. Remarks 

According to Gao [4] and the following remarks, we can 
construct the extension field Fpm as Type I-X AOPF for many 
pairs of characteristic p and extension degree m except for the 
case of (1). 

Remark 1. For an arbitrary extension degree m, there is an 
infinite number of k’s such that km+1 becomes a prime number. 
It is well-known as the Dirichlet’s theorem on arithmetic 
progressions [3]. 

Remark 2. From many experimental results, except for the 
case of (1), there exist positive integer k’s such that 1) km+1 is a 
prime number and 2) p is a primitive element in Fkm+1

4). 
Remark 3. When (1) is satisfied, there is no positive integer 

k that satisfies 1) km+1 is a prime number and 2) p is a 
primitive element in Fkm+1.  

Proof (Remark3). Let km+1 be a prime number and 8p   
divide m(p–1). Consider the primitivity of the element p in 
Fkm+1. Using Legendre symbol (a/b) and the well-known 
quadratic reciprocity law [18], we have 
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4) We examined many pairs of p and m; however, there were no counter examples. 

Therefore, it will be available for almost every pair of p and m except for the case of (1). There 
are ( )kmφ  primitive elements in F*km+1, where ( )⋅φ  is the Euler’s function. 



774   Hidehiro Kato et al. ETRI Journal, Volume 29, Number 6, December 2007 

where it is noted that 8p divides m(p-1). Consequently, p is not 
a primitive element in Fkm+1.                         � 

4. Original CVMA for Type I-X AOPF 

If CVMA in Type I AOPF Fpkm is applied in the 
multiplication of elements in Type I-X AOPF Fpm as it is, the 
calculation cost becomes unnecessarily large. For example, 
from (10), the number of Fp-multiplications required for a 
multiplication in Fpkm becomes 

( ) 2.1# += kmkmSMUL               (17) 

The appropriate cost for Type I-X AOPF Fpm will be 

( ) 2.1# += mmSMUL                (18) 

Next, we modify the original CVMA in Type I AOPF Fpkm to 
be efficiently applied in its subfield Type I-X AOPF Fpm. We 
consider a multiplication of two elements in Type I-X AOPF 
Fpm by modifying the CVMA in Type I AOPF Fpkm. 

■ Modification of CVMA for Type I-X AOPF 
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Consider the multiplication of two elements X and Y in 
Type I-X AOPF Fpm shown in (19), where 〈⋅〉 denotes ⋅ mod 
km+1. This multiplication is calculated as (20). Using (21), 
we have (22). From (22c) to (22d), we use the following 
relation: 
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Here, we use the following property. 

Property 1. 
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See appendix for its proof. Based on (22d) and the above 
property, we propose a multiplication algorithm in Type I-X 
AOPF Fpm as shown in Fig. 2. In the algorithm, lines 1 and 5 
correspond to the calculation of (22d). Multiplying the scalar k 
at line 8 corresponds to the former condition of (24b). In 
property 1 and the proposed algorithm shown in Fig. 2, the 
primitivity of p in Fkm+1 is efficiently used. 

Unlike the algorithms in [16] and [17], our proposed 
algorithm is quite simple; therefore, the calculation cost is 
clearly given. Moreover, it is adaptable enough for changing 
characteristic p and extension degree m. In particular, when the 
extension degree m is small, it is quite efficient. 
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IV. Cost Evaluation and Comparison 

1. Cost Evaluation 

As shown in Fig. 2, the proposed algorithm requires the 
calculation of the indexes such as 〈pi+pj+hm〉; however, the 
indexes can be computed prior to calculation when the 
extension degree m is small. Then, we can directly write the 
program with the calculated indexes. Thus, the calculation cost 
for these indexes is not taken into account in this paper. 

According to section III.4 and Fig. 2, the proposed algorithm 
requires the following calculation cost: 

( ) ,1
2

1# +
+

=
mm

SMUL              (25a) 

( )( ) .
2

21# mkmm
+

+−
=SADD        (25b) 

The “+1” in (25a) corresponds to kq[0] at line 8 in the 
proposed algorithm. When k=1, this multiplication is not 
needed. In addition, when k is small, kq[0] can be calculated 
with (k–1) additions. For example, 3q[0]=q[0]+q[0]+q[0]. In 
Table 1, #SADD is evaluated with such additions. 

Compared to (10), #SMUL is almost the same, and #SADD is 
about k times larger. As previously discussed, it is preferable for 
parameter k to be small. When k=1, it is a Type I AOPF [6], 
and when k=2, it is a Type II AOPF [9]. 

2. Comparison 

We checked the smallest parameter k for 10,000 160-bit 
prime numbers as characteristic p, in which the extension 
degree m was fixed at 6. From the experimental result, the 
average of the smallest k was 3.73. Moreover, for about 70% of 
the prime numbers, k was equal to or less than 3. Therefore, we 
consider 3≤k . For example, let us consider the case in which 
the modular polynomial is an irreducible trinomial: 

.,,6
pFbabaxx ∈++           (26) 

Using the Karatsuba method [5], the calculation cost for a 
multiplication with the modular polynomial (26) becomes 

.69#,28# == SADDSMUL               (27) 

On the other hand, when k=3, that in Type I-X AOPF Fp6 
needs 

#SMUL= 21,  #SADD = 83.               (28) 

Table 1 shows the comparison of the calculation cost 
required for a multiplication in Fpm. Since it is necessary in 
Type I-X AOPF Fpm for km + 1 to be a prime number, as shown 
in the table, there is no data when k and m are both odd  

Table 1. Comparison of the calculation cost for a multiplication in Fpm.

Extension degree m 
Extension field Fpm 

3 4 5 6 

General type OEF (8,15) (12,27) (19,42) (23,64) 

Type II OEF (6,17) (9,30) (15,46) (15,46) 

Irreducible trinomial (10,17) (15,30) (23,46) (28,69) 

k=1 - (10,22) - (21,51) 

k=2 (6,16) - (15,46) (21,67) Type I-X AOPF

k=3 - (10,36) - (21,83) 

 Remark : From the left hand side in the parenthesis, the numbers show #SMUL and 
#SADD, respectively. 

Table 2. Computation time for a multiplication in Fpm (µs). 

Extension degree m 
Extension field Fpm 

3 4 5 6 

General type OEF 6.37 9.77 15.6 20.2 

Type II OEF 6.01 9.16 14.9 19.2 

Irreducible trinomial 7.50 11.5 17.9 22.8 

k=1 - 9.65 - 20.7 

k=2 5.94 - 15.4 21.6 Type I-X AOPF

k=3 - 10.6 - 22.6 

 Remark : The authors used Pentium 4 (3.6 GHz), C++ programming language, and 
NTL [19]. The characteristic p was a 160-bit prime. 

numbers. From this comparison, we find that Type I-X AOPF 
achieves an efficiency almost as high as that of OEF. Moreover, 
Type I-X AOPF Fpm can be constructed for many pairs of 
characteristic p and extension degree m except for the case of (1). 

Table 2 shows the average computation time for a 
multiplication in Type I-X AOPF Fpm. We used Pentium 4 (3.6 
GHz), C++ programming language, and NTL [19]. As 
characteristic p, we used a 160-bit prime number such that 
there were irreducible trinomials, and OEF and Type II OEF 
could be constructed. From Table 2, it can be concluded that 
Type I-X AOPF is practical enough for small extension degrees 
and small k. 

3. Application 

In general, it is said that the security level of public key 
cryptography increases as the size of the definition field 
increases5). If we can easily and seamlessly change the size of 
the definition field, we can realize variable key-length public 
key cryptography. Type I-X AOPF is useful for this. For 
example, fix characteristic p to a certain 32-bit prime  
                                                               

5) Of course, if there are any other conditions from the viewpoint of security, the definition 
field should be selected such that those conditions are satisfied. 
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Fig. 3. Maximum, minimum, and average of the smallest k’s for 
Type I-X NB in Fpm when log2 p ≈32. 
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Fig. 4. Maximum, minimum, and average of the smallest k’s for 
Type I-X NB in Fpm when log2 p ≈160. 
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number, then change the extension degree m. As previously 
shown, it is easy to change the extension degree m for the 
proposed algorithm in Fig. 2, though parameter k will be 
correspondingly changed. By changing m, the size of the 
definition field Fpm is changed. Accordingly the key-length is 
changed. When the size of characteristic p is 32 bits, we can 
change the key-length by every 32 bits. Some conventional 
methods such as OEF and irreducible trinomial-based 
extension fields cannot be easily treated in this way. When we 
use extension fields for elliptic curve cryptography, we must 
pay attention to several attacks, such as FR reduction [20] and 
the Weil descent attack [21]. 

On the other hand, for the proposed method, it is preferable 
for k and m to be small. It is especially preferable for parameter 
k to be small because #SADD depends on k as shown in (25b). 
For 1,000 32-bit prime numbers as characteristic p, the authors 
measured the maximum, minimum, and average of parameter  

 

Fig. 5. Distribution of the smallest k’s for Type I-X NB in Fpm

when m = 3, 4, 5, 6 and log2 p ≈160. 
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k’s such that Type I-X NB exists in Fpm. Figure 3 shows the 
result. Figure 4 shows the result for 1,000 160-bit prime 
numbers, and Fig. 5 shows the distribution of the smallest k’s 
for 10,000 160-bit prime numbers. As discussed in section I, 
pairing-based cryptography uses a 160-bit prime number and 6 
as characteristic and extension degree [1], respectively. 
When log2 p ≈ 160 and m=6, the maximum, minimum, and 
average were 37, 1, and 3.73, respectively. Moreover, for about 
70% of the prime numbers, k was equal to or less than 3. Thus, 
the proposed method is useful for scalably changing m; 
however, it should be noted that the calculation cost increases 
as k and m increase. 

V. Conclusion 

This paper proposed a multiplication algorithm for Fpm which 
was efficiently applied to many pairs of characteristic p and 
extension degree m except for the case in which 8p divided 
m(p–1). This algorithm uses a special class of type-〈k, m〉 
Gauss period normal bases and has several advantages. It is 
easily parallelized, Frobenius mapping is easily carried out 
since its basis is a normal basis, its calculation cost is clearly 
given, and it is sufficiently practical and useful when k and m 
are small. As a future work, we would like to develop a 
multiplication algorithm that can support all kinds of Gauss 
period normal bases. 

Appendix. Proof of Property 1 

Let 10 −≤<≤ mji . According to the relation between γ 
and ω, we have 
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If we set h=v–u, we have 
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When 0=+ +hmji pp , 
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Since 1
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γγγγ ppp mm
, we have 
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On the other hand, when 0≠+ +hmji pp , since p is a  
primitive element in Fkm+1, we can uniquely determine 

10 −≤≤ mt , which satisfies the following relation: 
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From (13b), 

.
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It is noted that the parameter t is uniquely determined from i, 
j, and h. Consequently, we have property 1. 
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