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A very promising application of active RFID systems is 
the electronic seal, an electronic device to guarantee the 
authenticity and integrity of freight containers. To provide 
freight containers with a high level of tamper resistance, 
the security of electronic seals must be ensured. In this 
paper, we present the design and implementation of an 
electronic seal protection system. First, we propose the 
eSeal Protection Protocol (ePP). Next, we implement and 
evaluate various cryptographic primitives as building 
blocks for our protocol. Our experimental results show that 
AES-CBC-MAC achieves the best performance among 
various schemes for message authentication and session 
key derivation. Finally, we implement a new electronic seal 
system equipped with ePP, and evaluate its performance 
using a real-world platform. Our evaluation shows that 
ePP guarantees a sufficient performance over an ARM9-
based interrogator.  
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I. Introduction 

1. Radio Frequency Identification 

Radio frequency identification (RFID) is an automatic 
identification method, in which identification data is stored on 
electronic devices called RFID tags (or transponders), and the 
information stored in RFID tags can be retrieved by an 
interrogator (or reader) using radio waves. An RFID tag only 
stores information to identify an object, such as a commercial 
product, animal, or a person. More detailed information on that 
object is stored in a backend server, which communicates with 
the interrogator through another channel. According to their 
power supply, RFID tags can be classified into two categories. 
Active tags have their own internal power source, while 
passive tags receive their energy from the electromagnetic field 
of the interrogator. In this paper, we are interested in active tags. 

Although RFID systems are now used in many applications 
including supply chain management, transport systems, animal 
identification, access control, and so on, security issues must be 
properly addressed for RFID systems, since they often deal 
with secret and private information. There has been extensive 
research on many aspects of RFID security, including blocker 
tags [3], hash lock schemes [4], hash chains [5], pseudonyms 
[6], re-encryption [7], block-cipher-based authentication [8], 
and so on. 

2. Electronic Seal and Security 

An electronic seal, or eSeal [9], is an electronic device to 
guarantee the authenticity and integrity of freight containers. It 
is an improved version of the manual cargo seal [10] which 
provides physical protection like a lock and indicates whether 
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or not the sealed entrance has been compromised. An eSeal can 
also contain identification data for containers and shipment 
information; therefore, it can be seen as a kind of active RFID 
tag. While there are several kinds of eSeals including infrared 
seals and remote reporting seals supporting satellite or cellular 
communications, the most popular ones are RFID-based 
eSeals. There are already many commercial RFID eSeal 
products operating at 433.92 MHz (UHF band). There are also 
ongoing standardization activities such as ISO 18185 drafts by 
ISO [9], [11]-[14]. 

According to ISO 18185-1 [9], the communication between 
an eSeal and an interrogator is performed using a command-
response protocol, that is, the interrogator always initiates a 
session using a pre-defined command, and the eSeal responds 
to it with appropriate data. The only exception is the alert 
message, which is initiated by an eSeal. Originally, an eSeal 
was defined as a read-only, non-reusable freight container seal 
conforming to the high security seal defined in ISO/PAS 17712 
[10] and conforming to ISO 18185 or revision thereof that 
electronically evidences tampering or intrusion through 
container doors. However, the concept of the eSeal is evolving 
into a tamper-resistant device with rewritable memory to store 
user-defined confidential information. 

Although eSeals can provide freight containers with a high 
level of tamper resistance by immediate alert, error condition 
reporting, and event logging, the security of the eSeal itself 
must be ensured [1]. There are many possible attacks against 
the authenticity and integrity of an eSeal. For example, an 
attacker can erase the tamper event log inside an eSeal, plant a 
fake event in the log, generate a fake alarm to deceive the 
interrogator, and so on [15]. Unfortunately, the current 
specifications for RFID eSeals do not provide any robust 
solution to these problems. 

3. Previous Works 

The draft standard ISO 18185, established by ISO 
TC104/SC4/WG2, defines application requirements, 
environmental characteristics, and various protocols for eSeals 
[9], [11]-[14]. However, a recent report by Motorola indicated 
that major deficiencies in the current ISO 18185 draft standard 
will lead to delayed or missed reads, inadequate security, and a 
lack of interoperability [16]. There was a particularly extensive 
vulnerability assessment for eSeals in early 2005, and spoofing 
and cloning were identified as potential data integrity threats to 
eSeals [17]. Hence, device authentication is believed to be the 
highest priority solution to mitigate those identified risks, and 
the eSeal standard-setting work (ISO 18185-4 [13]) is being 
expanded to meet that objective. As related works, we recently 
proposed a challenge-response protocol for mutual 

authentication between an eSeal and an interrogator [15]. We 
also implemented a 433 MHz active RFID system [18]. 

4. Contribution 

In this paper, we present the design and implementation of 
an eSeal protection system to protect confidential information 
and provide mutual authentication between an eSeal and its 
associated interrogator. Our contribution is three-fold.  

• We implement various cryptographic primitives as 
building blocks for our system. First we implement the 
standard block cipher AES [19] to guarantee the confidentiality 
of packets as well as several message authentication schemes 
for message integrity, authentication, and session key 
derivation. 

• We propose the eSeal Protection Protocol (ePP)1), which is 
based on AES. The ePP provides mutual authentication 
between an eSeal and its corresponding interrogator, 
supplementing the existing communication protocol with new 
security commands. It also provides several security 
functionalities such as data confidentiality, data integrity, 
immunity to DoS and replay protection. 

• We implement software modules for ePP, embed them 
into an eSeal and an interrogator, and evaluate their 
performances on a real-world eSeal system. Our evaluation 
shows that security protocols based on standard block cipher 
AES-128 over a low-cost and low-power processor, such as 
ATmega128L, cannot conform to the turn-around timing 
requirements of the current ISO 18185-7 standard [14], even if 
it is fully optimized. Therefore, it seems that the turn-around 
time in the current ISO 18185-7 standard is too tight, and it 
should be loosened to support secure operations. 

5. Organization 

The remainder of this paper is organized as follows. In 
section II, we describe security properties required for the 
communication protocol between an eSeal and an interrogator. 
Section III introduces cryptographic primitives, which will be 
the building blocks for our eSeal protection system, and 
analyzes their performance. In section IV, we propose ePP and 
design new commands conforming to the existing eSeal 
standards. Section V provides experimental results for 
performance evaluation of our system on a real-world platform. 
Finally, we conclude in section VI. 

II. Requirements for eSeal Data Protection 

In April 2005, ISO investigated threats and vulnerabilities in 
                                                               

1) This protocol was presented as a form of report at an ISO TC104 meeting [20]. 
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the air interface between an eSeal and an interrogator. 
According to this survey, the vulnerabilities are classified into 
the following three categories [17]. 

- Gather (loss of confidentiality): A malicious party tries to 
gain information about an eSeal by intercepting radio 
signals between eSeals and interrogators, or by probing a 
valid eSeal electrically. 

- Mimic (loss of integrity and authenticity): A malicious party 
clones an eSeal (cloning) or creates a device that cannot be 
discerned from a legitimate eSeal (spoofing). 

- Denial of service (loss of availability): A malicious party 
disrupts the communication channel by jamming or 
shielding, or disrupts the eSeal by power consumption or 
physical destruction. 

In order to solve the above problems, a communication 
protocol between an eSeal and an interrogator should guarantee 
the following security functions: 

- Mutual authentication between an eSeal and an interrogator 
- Data confidentiality and data integrity 
- Non-repudiation of stored data 
- Immunity to denial of service 
- Replay protection 

III. Cryptographic Primitives for eSeal Protection 

1. Cryptographic Algorithms 

In this section, we give preliminary information on 
cryptographic primitives, which are the main building blocks 
for our eSeal protection system. 

A. Encryption Algorithms  

To guarantee data confidentiality, an encryption algorithm 
should be used. Since it is natural to assume that an eSeal has 
only limited computing power, we decided to use symmetric key 
encryption. In our eSeal system, we use the standard block 
cipher AES [19]. The AES cipher is a substitution-permutation 
network composed of iterative rounds, where each round except 
the last contains four different transforms; SubBytes, ShiftRows, 
MixColumns, and AddRoundKey (No MixColumns transform 
is performed in the last round). While there are three allowable 
key lengths, namely, 128 bits, 192 bits and 256 bits, we only 
consider the first one and call it AES-128. 

For realization of our eSeal protection system, it is necessary 
to find an efficient way to implement AES and other related 
algorithms because cryptographic operations are resource-
consuming operations in general. There have been extensive 
studies on the efficient implementation of AES [8], [21]-[25], 
where most of the optimization is done on the SubBytes 

transform, since this is the most complex transform that involves 
a finite field inversion operation on GF(28). A typical approach to 
implementing this transform is to use a pre-computed table 
called an S-box. An S-box maps an 8-bit input to an 8-bit output; 
thus, it requires 256 elements in total. Note that if we use AES-
128, the input and output of every transform are 128 bits long. 
Therefore a SubBytes transform requires sixteen table look-ups. 
For hardware implementation, we can perform multiple 
SubBytes transforms in parallel. As a general rule, the more S-
boxes are used in parallel, the less clock cycles are needed for 
encryption [8]. For software implementation, most of the 
opportunity for improvement lies in manual code optimization, 
such as register reallocation and loop unrolling. Also, there is a 
novel technique in which an isomorphic composite field 
GF((24)2) is used instead of the original field GF(28) [21]. 

B. Pseudorandom Functions and Message Authentication 
Codes  

In addition to an encryption algorithm, we need a 
pseudorandom function (PRF) to derive various keys from the 
master key, and a message authentication code (MAC) for 
authentication and data integrity. Actually, PRF and MAC are 
closely related to each other, and there are many practical 
implementations of PRF and MAC in various international 
standards, many of which use hash functions or block ciphers 
for the building blocks of PRF as follows. 

- IKE (Internet Key Exchange) [26], [27], which is a 
component of IPsec used for mutual authentication and 
security association management, defines MACs and PRFs 
based on hash functions and AES, such as HMAC-MD5, 
HMAC-SHA1 and AES-XCBC-MAC [28], [29]. 

- TLS (Transport Layer Security) protocol [30] for 
communication security over the Internet defines a PRF 
using HMAC-MD5 and HMAC-SHA1. 

- IEEE 802.11i [31] for Wireless LAN security defines a PRF 
as a concatenation of HMAC-SHA1 outputs. 

- IEEE 802.16e [32] standard defines a key derivation 
function as iterations of CMAC or SHA-1. 

In this paper, we consider hash-based MAC (HMAC) schemes 
[33] using standard hash functions, such as MD5 and SHA-1. We 
also consider block-cipher-based MACs, such as CBC-MAC 
[34], CMAC [35], and XCBC-MAC [36], [37] using AES. 
Detailed description of these schemes can be found in [1]. 

Note that the cryptographic strength of the above schemes is 
based on the properties of the underlying primitives, namely, 
block ciphers and hash functions. Since several weaknesses 
were recently found in MD5 and SHA-1 [38], [39], the use of 
AES-based PRFs and MACs would be preferable from the 
viewpoint of security. 
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2. Efficient Implementation 

In this subsection, we present various experimental results to 
implement AES and PRFs. An eSeal is equipped with a low-end 
microcontroller so that it can process identification data, 
shipment information, and tamper event logs. Therefore, we can 
provide security functions as a form of software code optimized 
for this microcontroller. Our target device for eSeal is Atmel’s 
ATmega128L microcontroller2), which is a RISC processor with 
32 general purpose 8-bit registers. It has a program memory of 
128 KB and a data memory of 4 KB, and it operates at various 
clock speeds. We chose a speed of 8 MHz, and we used 
WinAVR (release 20060421) as a cross compiler. Because an 
interrogator has to deal with many packets which are sent to and 
from numerous eSeals around it, its computing power should be 
much better than that of an eSeal. For this reason, we used 
Samsung’s S3C2440A processor for the interrogator, which is a 
16/32-bit RISC microprocessor based on the ARM920T core 
and has a maximum 400 MHz operating speed. 

A. Efficient Implementation of AES  

In our software implementation of AES-128, as in typical 
software implementations, we concentrated on maximizing the 
throughput. By loop unrolling ten rounds of AES, we could 
obtain some improvement in throughput at the expense of 
program memory. Also we constructed a pre-computation table 
for the xtime operation, namely, a multiplication by x over 
GF(28), as well as a pre-computed S-box. Thus, we could 
obtain the data given in the first two rows of Table 1. 

According to our analysis of this initial implementation, the 
compiled code had many load/store instructions, since it stores the 
128-bit state into the data memory. Also, loading pre-computed 
values for the S-box and xtime operations consumes many 
machine cycles to compute the addresses of these values. This 
problem seems more serious on the ATmega128L processor 
because it operates at a very low clock speed. Therefore, we wrote 
assembly programs for ATmega128L, in which each state is 
stored in registers, not in the memory, and the addresses of pre-
computed tables are fixed so that they are not computed 
repeatedly. Additionally, we tried the following modifications. 

1) First, we convert the C code into a hand-written assembly 
code, which is a common technique of optimization. 

2) AES is composed of ten rounds, each of which has a similar 
structure. In the initial version previously explained, we 
unrolled this loop to speed up computation. However, loop 
unrolling requires more memory to program each round                                                                
2) We do not use a more powerful processor, such as ARM 9, because ATmega128L is a 

low-power microcontroller. Power consumption is very important for an eSeal system, since an 
eSeal has to survive the lifetime of a freight container. Also, ATmega128L has an internal RAM 
and an internal EEPROM, which saves more power. 

independently. In the second modification, we removed loop 
unrolling, recovering the loop structure, to reduce the 
required program memory. 

3) Each round of AES, except the last round, is composed of 
four transforms, namely, SubBytes, ShiftRows, 
MixColumns, and AddRoundKey, where SubBytes maps 
each input byte into another byte according to an S-box, and 
ShiftRows permutes the output bytes of SubBytes in a pre-
defined order. Hence, a common optimization technique 
merges SubBytes and ShiftRows into a single transform, 
which performs substitution and permutation together. Note 
that this method improves both the throughput and the usage 
of program memory. 

4) If we represent each element in GF(28) as a polynomial with 
degrees up to 7 and whose coefficients are in {0, 1}, the 
MixColumns transform can be written as a matrix 
multiplication as 
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where ij, oj (j = 0,…, 3) are polynomials with degrees up to 7. 
Since this transform requires many polynomial multiplications, 
a common acceleration technique for MixColumns is to pre-
compute ax × for every a∈GF(28). Thus, the initial version of 
our AES implementation has two pre-computation tables, one 
for the xtime operation and the other for the S-box, as 
previously mentioned. However, the xtime table guarantees 
less speed improvement than the S-box table. In our fourth 
modification, we removed the pre-computation table for xtime 
to reduce the required data memory. This modification also 
reduces the program memory slightly, since there is no routine 
to construct an xtime table. 
 

The lower part of Table 1 shows the results of these 
 

Table 1. Performance of software modules for AES-128. 

Memory (B) Time (µs) 
 

Program Data 
Key 

expansion Encryption

C on S3C2440A 15,204 436 3.9 5.4 

C on ATmega128L 8,334 554 268.0 604.0 

Method 1 4,270 512 105.0 277.1 

Method 2 1,688 512 105.0 302.7 

Method 3 1,660 512 105.0 293.7 
Assembly on 
ATmega128L

Method 4 1,528 256 103.7 339.2 
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Table 2. Performance of various MAC modules written in C on
ATmega128L and S3C2440A. 

S3C2440A ATmega128L 

Memory (B) Memory (B)  

Program Data 

Throughput* 
(Mbps) Program Data 

Throughput*
(kbps) 

HMAC-MD5 5,509 632 7.71 10,498 982 18.35 

HMAC-SHA1 7,741 632 7.22 5,950 1,00
3 13.33 

AES-CBC-
MAC 15,633 568 16.18 8,762 554 154.22 

AES-CMAC 15,897 584 11.72 9,018 570 111.30 
AES-XCBC-

MAC 15,757 616 9.03 8,938 602 83.39 

 * Key scheduling time is included. 

experiments. Clearly, each of the four methods using hand-
written assembly codes requires a smaller amount of memory 
and much less time than a module compiled from a C program. 
We can observe a time-memory tradeoff between methods 1 
and 2 in the table. Method 3 slightly improves both the 
memory size and the execution time compared to method 2. 
Removal of pre-computation tables (method 4) reduces the 
amount of data memory, but the execution time increases. 

B. Efficient Implementation of PRF  

Next, we consider the implementation of MAC and, thus, 
PRF. As explained in section III.1, we can take two categories 
of MACs into account, namely, hash-based MACs and block-
cipher-based MACs. We compare the following typical 
choices: HMAC-MD5 and HMAC-SHA1 for hash-based 
MACs, and AES-CBC-MAC, AES-CMAC, and AES-XCBC-
MAC for AES-based MACs. 

Table 2 compares the performance of MAC modules 
implemented using the C language, where AES-based 
algorithms use the AES routines given in the previous section. 
Because we use MAC algorithms for key derivation and 
authentication in our eSeal system, the input message for MAC 
is very short in most cases. Therefore, we set the message 
length to 256 bits, that is, 32 bytes, which is a sufficient value 
for communication protocols between an eSeal and an 
interrogator [9]. Table 3 shows the performance of MAC 
modules using hand-written assembly modules for AES-128 
over ATmega128L. In these tables, we can see that AES-based 
algorithms are much faster than hash-based ones using a 
comparable amount of memory, but the gain is relatively 
smaller over S3C2440A than it is over ATmega128L because 
the MD5 and SHA-1 algorithms have been designed to fit into 
a 32-bit architecture, but AES was designed to perform well 
also on an 8-bit architecture. In particular, AES-CBC-MAC  

Table 3. Performance of AES-based MAC modules written in 
assembly over ATmega128L. 

Memory (B) 
 

Program Data 
Throughput 

(kbps) 

Method 1 4,636 688 371.01 

Method 2 2,044 688 345.95 

Method 3 2,016 688 355.56 
AES-CBC-

MAC 

Method 4 1,888 432 316.05 

Method 1 4,806 706 266.67 

Method 2 2,214 706 248.54 

Method 3 2,186 706 253.47 
AES-CMAC

Method 4 2,054 450 224.56 

Method 1 4,776 706 195.42 

Method 2 2,182 706 181.56 

Method 3 2,154 706 186.86 
AES-XCBC-

MAC 

Method 4 2,022 450 164.10 

 

shows the best throughput and uses the smallest amount of 
memory; therefore, we use AES-CBC-MAC for our MAC and 
PRF. 

IV. eSeal Protection Protocol (ePP) 

In this section, we present ePP and its related commands 
conforming to the existing eSeal standards. We also analyze its 
security features. First, we begin by introducing the overall 
structure of an eSeal system. 

1. Overview of an eSeal Protection System 

Figure 1 shows the architecture of the proposed system. We 
assume that there are two kinds of back-end servers to 
support secure data management, namely, an authentication 
server and a digital signature server. The authentication server 
stores master keys to access eSeals, where every eSeal is 
related to a distinct master key. After the interrogator obtains 
the seal ID of the target eSeal using the collection method 
conforming to ISO 18185-1 [9], it sends a request for a 
master key to the authentication server, and acquires a proper 
key related to the identified eSeal.3) The digital signature 
server generates a signature to guarantee that the data inside 
an eSeal is valid. Hence, the data is signed using the private 
                                                               

3) The problem of key distribution is important, but it is beyond the scope of this paper. The 
architecture of our system is similar to that of WPA2 (Wi-Fi Protected Access 2), or IEEE 
802.11i [31], which is a security framework for IEEE 802.11 Wireless LAN. Hence it can be 
effectively implemented using a mechanism similar to WLAN. 
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Fig. 1. Architecture of the proposed eSeal system. 

① Collection request ISO 18185-1 coverage 

Authentication
server 

⑦ ePP request 

⑧ ePP response 

② Seal ID response 

③ eSeal master key request 

④ eSeal master key response

⑤ Digital signature request 

⑥ Digital signature response 

Interrogator eSeal 
Digital  

signature  
server 

EPP coverage 

 
 
key of the sender of a freight container. Although the 
signature is transferred together with data when it is uploaded 
to an eSeal, this does not mean that the eSeal has the ability to 
verify the digital signature. An eSeal only functions as a 
signature carrier. The signature is verified by another 
interrogator that reads the eSeal’s data and checks the 
authenticity and integrity of the corresponding freight 
container. We assume that communication between the 
interrogator and the digital signature server is protected by 
IPsec, and that signing and verification are performed 
according to ECDSA-163 [40]. 

As previously explained, steps 1 to 6 in Fig. 1 can be 
implemented by existing protocols. In steps 7 and 8, the 
interrogator reads data from an eSeal or writes data to an eSeal 
in a secure manner. The purpose of this section is to design and 
analyze protocols for this part of the system. The security of 
this communication is supported by a unique master key which 
is hard-programmed into the eSeal. This master key should be 
identical to one stored in the authentication server’s database 
with that eSeal’s ID. 

2. Design of New Commands 

Since there are already many eSeal systems and related ISO 
standards, the new ePP should conform to these existing 
standards. Therefore, our ePP operations are not designed as 
completely new ones, rather they are embedded into three basic 
command types of eSeal standard: read, write, and alert. Our 
new command codes are defined according to the existing ISO 
command format [9]. Table 4 shows these new commands. 
The ePP Write and ePP Read commands are used for an eSeal 
and an interrogator to authenticate each other when the eSeal’s 
data is accessed. These commands are always initiated by the 
interrogator’s request. On the other hand, ePP Alert command 
is a broadcast command initiated by an eSeal, and it is used to 
generate an authentic alert to prevent a fake alert from an illegal 
eSeal. All of these communications are secured using the  

Table 4. ePP command codes. 

Code Name Type Direction Description

ePP Write Request Interrogator→eSeal
0x51

ePP Write Response eSeal→Interrogator

Write into 
eSeal’s 
memory 

ePP Read Request Interrogator→eSeal
0x53

ePP Read Response eSeal→Interrogator

Read from 
eSeal’s 
memory 

0x7F ePP Alert Alert 
eSeal→Interrogator 

(Broadcast) 
Alert 

message 

 

master key. 
To guarantee the cryptographic strength of ePP, we use a 

well-known authenticated encryption mode of block cipher, 
namely, counter with CBC-MAC (CCM) mode of operation 
[41], which is also used in the IEEE 802.11i standard [31]. This 
choice is reasonable in the context of our eSeal system since 
CBC-MAC shows better performance than other block-cipher-
based MACs and hash-based MACs. The CCM mode requires 
encapsulation and decapsulation procedures for each packet. 
We use modifications of the procedures defined in the IEEE 
802.11i standard [31] and denote them as CCMe_ENCKey 
(Rand, AAD, Message) and CCMe_DECKey (Rand, AAD, 
Cipher), respectively, where CCMe stands for CCM for eSeal, 
Key is a symmetric key for CCM, Rand is a random number 
which becomes a part of the nonce, AAD is additional 
authentication data, Message is a message to be encoded, and 
Cipher is a ciphertext to be decoded and verified. The precise 
description of these procedures will be given separately in the 
next subsection. 

A. ePP Write Command  

Figure 2 shows the procedure for the ePP Write command, 
which involves the following parameters: 

- r: random number to guarantee freshness of a new session 

 

Fig. 2. ePP Write procedure. 

Interrogator eSeal 

Master key KE 
Random number r  

Information I  
Digital Signature S for I
CCMe_ENCKE(r, S, I) 

ePP Write-Request 

r, S, and I 
Date/Time DT and Int. ID IID
CCMe_ENCKE(r+1, Null, DT)

ePP Write-Response 

 
Failure Error handling (e.g., discard) 

 

Date/Time DT 

Success

Failure 

Request header D(encrypted I) MIC CRC Sr

Master key KE 

Error handling (e.g., request again) 

Response header D(encrypted DT) MIC CRCr+1 

Success

fresh r ? 
CCMe_DECKE(r, S, D)

CCMe_DECKE(r+1, Null, D)
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Fig. 3. Packet format for the ePP Write command. 

2 B Max 234 B 1 B 2 B 2 B 1 B 2 B 4 B 2 B 1 B  1 B 
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CRC Command 
arguments 
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length 

Max command 
duration 

Min command 
duration 

Command
code 

Interrogator 
ID Tag ID Tag 

manufacture ID 
Packet  
options Protocol ID 

2 B 32 B 1 B 4 B 2 B 2 B 1 B 2 B 0x80 
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- KE: master key 
- I: confidential information to be protected 
- S: digital signature for I 
- DT: current date and time 
- D: encrypted value for either I or DT 
- IID: interrogator ID 

The message integrity code is denoted by MIC, and CRC 
stands for cyclic redundancy check. 

The ePP Write procedure is a two-way handshake protocol 
including the ePP Write-Request and ePP Write-Response. The 
ePP Write-Request includes the ePP packet header, which 
delivers the seal ID and the interrogator ID, and it also includes 
r, S, D, MIC, and CRC. Each step of the ePP Write procedure 
is performed as follows. 

Step 1. Interrogator (request) 
- Obtain the master key KE from the authentication server. 
- Generate a random number r. 
- Prepare confidential information I. 
- Get the digital signature S for I from the digital signature 

server. 
- Perform the CCMe_ENC function to encrypt I and calculate 

MIC for I and S. We use S as AAD of CCM encapsulation. 
- Send the ePP Write-Request command as shown in Fig. 2. 

Step 2. eSeal (response) 
- Receive the ePP Write-Request command.  
- Perform CCMe_DEC function to decrypt the ciphertext D 

and verify MIC. We should use the same random number r 
and the same AAD S as in the encapsulation procedure 
performed by the interrogator. 

- If decryption fails or if there is already a stored random 
number equal to r, this command is discarded.  

- Store r, S, and I. 
- Record the current data/time, DT, and IID. 
- Increase r by 1.  
- Perform the CCMe_ENC function to encrypt DT and 

calculate MIC for DT. 

- Send the ePP Write-Response as shown in Fig. 2. 
Step 3. Interrogator  

- Receive the ePP Write-Response. 
- Perform the CCMe_DEC function to decrypt the ciphertext D. 
- If decryption fails, then the response is discarded. 
- Record the decrypted DT. 

Figure 3 shows the packet format for the ePP Write 
Information command, which conforms to the ISO command 
format [9]. The gray boxes show newly defined values. 

B. ePP Read Command  

The second ePP operation is ePP Read, which is depicted in 
Fig. 4. We omit the procedure and packet format of ePP Read, 
since they are similar to those of ePP Write. 

C. ePP Alert Command  

The last ePP operation is ePP Alert, which is shown in Fig. 5. 
The procedure of ePP Alert is performed as follows. 

Step 1. eSeal (Alert) 
- Generate a random number r.  

 

 

Fig. 4. ePP Read procedure. 
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Fig. 5. ePP Alert procedure. 
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- Prepare an alert message A.  
- Perform the CCMe_ENC function to encrypt A and 

calculate MIC for A. 
- Send the ePP Alert packet. 

Step 2. Interrogator (alert management)  
- Receive the ePP Alert message.  
- Obtain the master key KE from the authentication server.  
- Perform the CCMe_DEC function to recover A. 
- If the decryption fails or there is a stored random number 

equal to the received r, then the alert message is discarded.  
- Store r, and report the alert to the manager. 

3. Cryptographic Functions for ePP 

Figure 6 shows an example of CCMe encapsulation which is 
performed by an interrogator to initiate an ePP Write operation. 
The interrogator generates a write request for Message by 
encrypting it using AES-CCM (part (A) in the figure) with a 
random number r and additional authentication data, namely, a 
digital signature S for Message. As well as an encrypted message 
Ciphertext, an MIC is generated (part (A)), expanding the 
original packet size by 8 bytes (part (B)). Then, CRC is 
appended after the MIC (part (C))4). The CCMe decapsulation 
procedure can be defined as a counterpart to the CCMe 
encapsulation procedure. For a more detailed description, see [2]. 

According to the preceding description, the following 
primitives should be implemented for ePP: 

- pseudorandom number generator (PRNG) to generate r 
- AES-128 and its counter and CBC modes for CCM 

encryption/decryption 
- PRF to derive a mutual transient key (MTK) from a master 

key 

For the first item, we can reuse the PRNG used for other 
eSeal operations, such as anti-collision and collection, and it 
can be realized using various methods based on hardware or 
                                                               

4) Although CRC also increases the packet size, this is not an overhead, since every eSeal 
command packet should contain a CRC even when we do not use ePP. 

 

Fig. 6. Generation of an ePP Write-Request packet using 
CCMe_ENCKE (r, S, Message). 
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software. The software implementation of AES-128 using C 
and assembly languages was provided in section III.2, and 
various PRFs based on hash functions and AES modes of 
operations were compared. As demonstrated in section III.2, 
AES-CBC-MAC is the most efficient. The key derivation 
procedure using PRF is defined as 

MTK = AES-CBC-MACKE(r || seal ID || interrogator ID), 

where KE is a 128-bit master key, r is a 64-bit random number, 
and the seal ID and interrogator ID are 6 and 2 bytes long, 
respectively. Therefore, this is actually AES encryption of a 
single message block. An MTK is refreshed for every packet. 
Finally, a 13-byte nonce is constructed by concatenating r, the 
three most significant bytes of the seal ID, and the 2-byte 
interrogator ID. 

4. Security Analysis 

In this section, we analyze the security features of the 
proposed ePP using the terms given in section II. 

A. Mutual Authentication 

This security service is for the ePP Write and ePP Read 
operations. The eSeal and the interrogator can authenticate 
each other by proving to have driven the same MTK from the 
same pre-shared master key to generate the MIC. 

B. Data Confidentiality and Data Integrity 

Since we encrypt the private data I using MTK, and this 
MTK should be derived from the master key, an eavesdropper 
who does not know the master key cannot understand I. The 
encryption is done with the CCM mode of AES, which also 
supports message authentication. Thus, an attacker who does 
not know the master key can neither generate a fake message 
nor change the content of a message. 
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C. Non-repudiation of Stored Data  

In our protocol, only the party who has permission to write 
the confidential information I should be able to generate a 
digital signature S using its own private key. The digital 
signature server shown in Fig. 1 plays the role of the owner of 
the private key, and delegates the interrogator to write I and the 
corresponding S to the eSeal. The connection between the 
interrogator and the digital signature server is protected through 
a secure channel. An eSeal does not verify a digital signature. It 
functions as a carrier of the signature. 

D. Partial Immunity to Denial of Service 

Although DoS cannot be prevented completely, it can be 
mitigated by ePP, since ePP will not proceed any further after 
an integrity check fails. 

E. Partial Replay Protection 

An eSeal and an interrogator hold a list of the previously 
used random numbers and compare the received random 
numbers with previously stored values. Hence, a reused 
message can be detected. However, since the memory of the 
eSeal is restricted, it cannot store the complete list of random 
numbers. 

V. Performance Analysis 

1. Testbed for eSeal Protection System 

In this section, we estimate the performance of our eSeal 
protection system. First, we introduce an eSeal platform 
implemented in our previous work [18] as a test bed for 
performance evaluation. In this platform, the interrogator and 
the eSeal were implemented in accordance with ISO 18185-1 
and ISO 18185-7 [9], [14]. Figure 7 shows the block diagram 
for the hardware of the interrogator and the eSeal. 

The interrogator is equipped with a Samsung microprocessor 
(S3C2440A), a Chipcon RF transceiver (CC1020), a 64 MB 
SDRAM, a 16 MB flash memory, an Ethernet controller, and 
other peripheral components. The S3C2440A is a 16/32-bit 
RISC microprocessor based on the ARM920T core and has a 
maximum operating speed of 400 MHz. It embeds a real time 
clock (RTC) unit, and the only external RTC component 
required is a 32.768 kHz crystal. The RTC function is 
necessary for an eSeal system that includes the ePP operations. 
The RF transceiver, which is controlled by the microprocessor, 
allows the interrogator to communicate with the eSeal using 
the 433.92 MHz frequency. The interrogator provides a 10 
Mbps Ethernet interface and an RS-232 serial interface. 
Through these interfaces, the interrogator receives  

 

Fig. 7. Block diagram of the hardware of the interrogator and the 
eSeal. 
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commands from and sends responses to a host system. The 
interrogator software modules are implemented using the C 
language based on the embedded Linux (kernel version: 2.4.20), 
which was ported to the microprocessor of the interrogator. 

The eSeal is equipped with an Ateml microcontroller 
(ATmega128L); a Chipcon RF transceiver (CC1020), which is 
the same as the one used in the interrogator; an RTC chip; and 
other components. The eSeal is powered by two 1.5 V AA 
batteries. It also has an RS-232 serial interface to monitor the 
function of the eSeal. The eSeal software modules are 
implemented using the C language, with the exception of 
cryptographic algorithms, which are implemented in part using 
the assembly language. 

For cryptographic operations performed in the interrogator 
and the eSeal, we use the software modules implemented in 
section III. The implemented interrogator and eSeal work in 
accordance with ISO 18185-4 as well as ISO 18185-1 and ISO 
18185-7 [13], [9], [14]. In addition, so that the interrogator may 
support the IPsec protocols, we ported the IPsec software 
modules to it, including the IKEv2 software modules. 

We measured the timing for processing ePP and analyzed the 
processing overheads in both the interrogator and the eSeal. In 
our experiments, the processes for digital signatures were not 
included in the ePP procedures. We also assumed that an 
interrogator already has the seal ID of a target eSeal. Figure 8 
shows the experimental environment for performance 
evaluation of ePP. As explained above, the microprocessor  
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Fig. 8. Experimental environment for performance evaluation of
ePP. 
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(S3C2440A) in the interrogator operates at 400 MHz and the 
microcontroller (ATmega128L) in the eSeal operates at 8 MHz. 

For the experiments, we developed a simple authentication 
server on a laptop to provide the master key corresponding to 
the Seal ID. The laptop was equipped with a 2.0 GHz Intel 
Pentium 4 CPU and 512 MB RAM. It operated with Linux 
Fedora Core 3 (kernel version: 2.6.9). The interrogator was 
directly connected to the authentication server through 10 
Mbps Ethernet without a switch. A 10 Mbps Ethernet 
connection was sufficient for our platform, since the amounts 
of transmitted data were very small, such as 6 bytes or 16 bytes. 

2. Latency in the Backend Communications 

Before ePP is processed, the interrogator must acquire the 
master key corresponding to the seal ID from an authentication 
server. We measured the time required for this process for two 
cases, one using common TCP/IP communication and the 
other using IPsec-enabled TCP/IP communication. The 
interrogator sent the 6-byte eSeal ID to the authentication 
server and received the 16-byte master key from the server. 
Table 5 shows the total latency for the interrogator to acquire 
the master key in the two cases. 

The latency with IPsec is approximately 36 µs longer than 
that using common TCP/IP communication because the 
processing time for the IPsec protocols is added. Thus, the 
processing time for the IPsec protocols is much less than the 
latency of TCP/IP communication. In a real communication 
environment, the latency of TCP/IP communication is not 
measured in microseconds but in milliseconds. With high 
communication latencies, the processing time of the IPsec 
protocols in the interrogator can be disregarded, although the 
 

Table 5. Latency for the interrogator to acquire the master key. 

Feature Latency 

Using common TCP/IP communication 592 µs 

Using IPsec-enable TCP/IP communication 628 µs 

 

latency of TCP/IP communication itself may cause a 
bottleneck in the ePP performance in the interrogator. However, 
in future network environments with low communication 
latencies, the processing time for the IPsec protocols in the 
interrogator may become significant. 

3. Analyses of Processing Overheads in Interrogator and eSeal 

To analyze the processing overheads of ePP, we measured 
the time spent in processing ePP in both the interrogator and 
the eSeal. For experimental purposes, we revised our ePP so 
that only confidential information I is encrypted; thus, in ePP 
Write-Response and ePP Read-Request, DT is not encrypted, 
but transmitted plain. There are no MICs for these packets.  

Figure 9 shows the processing times for the two ePP 
commands in the interrogator. The processing of ePP proceeds 
as follows: (1) the interrogator generates the ePP Request 
packet (xx_Packet); (2) the interrogator performs the CCMe 
encapsulation of the ePP Request packet (xx_Enc); (3) the 
interrogator sends the ePP Request packet to the eSeal and the 
eSeal processes it and returns the ePP Response packet (xx_RF 
and xx_eSeal); (4) the interrogator performs the CCMe 
decapsulation of the received ePP Response packet (xx_Dec). 

As shown in Fig. 9, the total processing time of ePP 
(xx_Total), which is the sum of xx_RF, xx_eSeal, xx_Packet, 
xx_Enc, and xx_Dec, is proportional to the amount of 
confidential data exchanged between the interrogator and the 
eSeal. However, as the amount of data increases, the 
processing times of the cryptographic operations for ePP 
(xx_Enc and xx_Dec) do not increase much, or stay constant. 
Moreover, xx_Enc and xx_Dec are much less than the time for 
RF communication between the interrogator and the eSeal 
(xx_RF) or the processing times of ePP in the eSeal (xx_eSeal). 
This proves that ePP is a light-weight protocol. Therefore,  
ePP operations in the interrogator incur very few processing 
overheads. 

Figure 10 shows the processing time of the two ePP 
commands in the eSeal. The total processing time of ePP 
(xx_Total), which is the sum of xx_Packet, xx_Dec, and 
xx_Enc, is the same as xx_eSeal in Fig. 9. The eSeal performs 
the CCMe decapsulation of the received ePP Request packet 
(xx_Dec), generates the ePP Response packet (xx_Packet), and 
performs the CCMe encapsulation of the ePP Response packet 
(xx_Enc). 

As shown in Fig. 10, xx_Total is proportional to the amount 
of confidential data exchanged between the interrogator and 
the eSeal. However, while the interrogator has sufficient 
processing power, the eSeal’s processing power is limited. For 
that reason, as the amount of confidential data increases, the 
processing times of the cryptographic operations for ePP  
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Fig. 9. Processing time of the two ePP commands in the
interrogator. 
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(xx_Enc and xx_Dec) also increase. For ePP Write, as more 
confidential data is received from the interrogator, more 
processing time is required for the CCMe decapsulation of the 
ePP Write-Request packet (Write_Dec). For ePP Read, as more 
confidential data is sent to the interrogator, more processing time 
is required for the CCMe encapsulation of the ePP Read- 
Response packet (Read_Enc). On the other hand, the ePP Write  

 

Fig. 10. Processing time of the two ePP commands in the eSeal.
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Response packet and the ePP Read-Request packet contain no 
confidential data, and their sizes are fixed; therefore, their 
processing times stay constant, independently of the amount   
of confidential data to be written or read (Write_Enc and 
Read_Dec). 

VI. Concluding Remarks 

In this paper, we presented the design and implementation of 
an electronic seal protection system. We identified security 
requirements for the eSeal system, and proposed the eSeal 
Protection Protocol based on the standard block cipher AES. 
Our security analysis shows that ePP satisfies the security 
requirements. We implemented various cryptographic 
primitives as building blocks for our protocol, and evaluated 
the performance of ePP on a real-world test bed using these 
primitives. Our evaluation shows that ePP guarantees a 
sufficient performance over an ARM9-based interrogator. 

However, processing ePP in an eSeal requires several 
milliseconds, even if we implement the cryptographic 
algorithms using the reasonably optimized assembly routines 
given in section III. The turn-around time in the eSeal system 
should be less than 1 ms to conform to the ISO 18185-7 



766   Dong Kyue Kim et al. ETRI Journal, Volume 29, Number 6, December 2007 

standard [14]. To address this problem, we could use a more 
powerful processor such as ARM9, but enhancing the 
computing power would increase the power consumption of an 
eSeal. Since an eSeal has to survive for a long period, at least 
during the transport time of freight containers, the power 
consumption issue is critical; therefore, the most economic 
solution would be to loosen the turn-around timing 
requirements defined in the ongoing ISO 18185 standard. 

If modification of the standard is not acceptable for other 
reasons, we can use a dedicated hardware for AES-128. Then, 
we can significantly reduce packet processing time, since it 
accelerates AES-CCM for encryption and MIC generation, and 
also accelerates the key derivation using AES-CBC-MAC. In 
the preliminary version of this paper [1], we provided various 
FPGA modules for AES, and their throughputs are over 400 
Mbps, which seems to easily solve the problem. Finally, there 
is an extensive literature on low power implementation of 
cryptographic hardware. For example, [42] would be a useful 
reference. 
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