
ETRI Journal, Volume 29, Number 6, December 2007 Dong Kyue Kim et al. 755

A very promising application of active RFID systems is
the electronic seal, an electronic device to guarantee the
authenticity and integrity of freight containers. To provide
freight containers with a high level of tamper resistance,
the security of electronic seals must be ensured. In this
paper, we present the design and implementation of an
electronic seal protection system. First, we propose the
eSeal Protection Protocol (ePP). Next, we implement and
evaluate various cryptographic primitives as building
blocks for our protocol. Our experimental results show that
AES-CBC-MAC achieves the best performance among
various schemes for message authentication and session
key derivation. Finally, we implement a new electronic seal
system equipped with ePP, and evaluate its performance
using a real-world platform. Our evaluation shows that
ePP guarantees a sufficient performance over an ARM9-
based interrogator.

Keywords: Active RFID, electronic seal (eSeal), eSeal
protection protocol, AES, pseudorandom function,
message authentication code.

Manuscript received Mar. 05, 2007: revised Aug. 06 2007.
The preliminary versions of this paper were presented in WISA 2006 [1], [2].
This work was supported by the Korea Research Foundation Grant funded by the Korean

Government (MOEHRD) (The Regional Research Universities Program/Research Center for
Logistics Information Technology) and grant no. R01-2006-000-10957-0 from the Basic
Research Program of the Korea Science & Engineering Foundation.

Dong Kyue Kim (phone: + 82 2 2220 2312, email: dqkim@hanyang.ac.kr) is with the
Division of Electronics and Computer Engineering, Hanyang University, Seoul, Rep. of Korea.

Mun-Kyu Lee (email: mklee@inha.ac.kr) is with the School of Computer Science and
Engineering, Inha University, Incheon, Rep. of Korea.

You Sung Kang (email: youskang@etri.re.kr) and Howon Kim (email: khw@etri.re.kr) are
with Information Security Research Division, ETRI, Daejeon, Rep. of Korea.

Sang-Hwa Chung (phone: + 82 51 510 2434, email: shchung@pusan.ac.kr), Won-Ju Yoon
(email: anospirit@pusan.ac.kr), and Jung-Ki Min (email: jkmin81@gmail.com) are with the
Department of Computer Engineering, Pusan National University, Busan, Rep. of Korea.

I. Introduction

1. Radio Frequency Identification

Radio frequency identification (RFID) is an automatic
identification method, in which identification data is stored on
electronic devices called RFID tags (or transponders), and the
information stored in RFID tags can be retrieved by an
interrogator (or reader) using radio waves. An RFID tag only
stores information to identify an object, such as a commercial
product, animal, or a person. More detailed information on that
object is stored in a backend server, which communicates with
the interrogator through another channel. According to their
power supply, RFID tags can be classified into two categories.
Active tags have their own internal power source, while
passive tags receive their energy from the electromagnetic field
of the interrogator. In this paper, we are interested in active tags.

Although RFID systems are now used in many applications
including supply chain management, transport systems, animal
identification, access control, and so on, security issues must be
properly addressed for RFID systems, since they often deal
with secret and private information. There has been extensive
research on many aspects of RFID security, including blocker
tags [3], hash lock schemes [4], hash chains [5], pseudonyms
[6], re-encryption [7], block-cipher-based authentication [8],
and so on.

2. Electronic Seal and Security

An electronic seal, or eSeal [9], is an electronic device to
guarantee the authenticity and integrity of freight containers. It
is an improved version of the manual cargo seal [10] which
provides physical protection like a lock and indicates whether

Design and Performance Analysis of
Electronic Seal Protection Systems Based on AES

 Dong Kyue Kim, Mun-Kyu Lee, You Sung Kang, Sang-Hwa Chung, Won-Ju Yoon,
Jung-Ki Min, and Howon Kim

756 Dong Kyue Kim et al. ETRI Journal, Volume 29, Number 6, December 2007

or not the sealed entrance has been compromised. An eSeal can
also contain identification data for containers and shipment
information; therefore, it can be seen as a kind of active RFID
tag. While there are several kinds of eSeals including infrared
seals and remote reporting seals supporting satellite or cellular
communications, the most popular ones are RFID-based
eSeals. There are already many commercial RFID eSeal
products operating at 433.92 MHz (UHF band). There are also
ongoing standardization activities such as ISO 18185 drafts by
ISO [9], [11]-[14].

According to ISO 18185-1 [9], the communication between
an eSeal and an interrogator is performed using a command-
response protocol, that is, the interrogator always initiates a
session using a pre-defined command, and the eSeal responds
to it with appropriate data. The only exception is the alert
message, which is initiated by an eSeal. Originally, an eSeal
was defined as a read-only, non-reusable freight container seal
conforming to the high security seal defined in ISO/PAS 17712
[10] and conforming to ISO 18185 or revision thereof that
electronically evidences tampering or intrusion through
container doors. However, the concept of the eSeal is evolving
into a tamper-resistant device with rewritable memory to store
user-defined confidential information.

Although eSeals can provide freight containers with a high
level of tamper resistance by immediate alert, error condition
reporting, and event logging, the security of the eSeal itself
must be ensured [1]. There are many possible attacks against
the authenticity and integrity of an eSeal. For example, an
attacker can erase the tamper event log inside an eSeal, plant a
fake event in the log, generate a fake alarm to deceive the
interrogator, and so on [15]. Unfortunately, the current
specifications for RFID eSeals do not provide any robust
solution to these problems.

3. Previous Works

The draft standard ISO 18185, established by ISO
TC104/SC4/WG2, defines application requirements,
environmental characteristics, and various protocols for eSeals
[9], [11]-[14]. However, a recent report by Motorola indicated
that major deficiencies in the current ISO 18185 draft standard
will lead to delayed or missed reads, inadequate security, and a
lack of interoperability [16]. There was a particularly extensive
vulnerability assessment for eSeals in early 2005, and spoofing
and cloning were identified as potential data integrity threats to
eSeals [17]. Hence, device authentication is believed to be the
highest priority solution to mitigate those identified risks, and
the eSeal standard-setting work (ISO 18185-4 [13]) is being
expanded to meet that objective. As related works, we recently
proposed a challenge-response protocol for mutual

authentication between an eSeal and an interrogator [15]. We
also implemented a 433 MHz active RFID system [18].

4. Contribution

In this paper, we present the design and implementation of
an eSeal protection system to protect confidential information
and provide mutual authentication between an eSeal and its
associated interrogator. Our contribution is three-fold.

• We implement various cryptographic primitives as
building blocks for our system. First we implement the
standard block cipher AES [19] to guarantee the confidentiality
of packets as well as several message authentication schemes
for message integrity, authentication, and session key
derivation.

• We propose the eSeal Protection Protocol (ePP)1), which is
based on AES. The ePP provides mutual authentication
between an eSeal and its corresponding interrogator,
supplementing the existing communication protocol with new
security commands. It also provides several security
functionalities such as data confidentiality, data integrity,
immunity to DoS and replay protection.

• We implement software modules for ePP, embed them
into an eSeal and an interrogator, and evaluate their
performances on a real-world eSeal system. Our evaluation
shows that security protocols based on standard block cipher
AES-128 over a low-cost and low-power processor, such as
ATmega128L, cannot conform to the turn-around timing
requirements of the current ISO 18185-7 standard [14], even if
it is fully optimized. Therefore, it seems that the turn-around
time in the current ISO 18185-7 standard is too tight, and it
should be loosened to support secure operations.

5. Organization

The remainder of this paper is organized as follows. In
section II, we describe security properties required for the
communication protocol between an eSeal and an interrogator.
Section III introduces cryptographic primitives, which will be
the building blocks for our eSeal protection system, and
analyzes their performance. In section IV, we propose ePP and
design new commands conforming to the existing eSeal
standards. Section V provides experimental results for
performance evaluation of our system on a real-world platform.
Finally, we conclude in section VI.

II. Requirements for eSeal Data Protection

In April 2005, ISO investigated threats and vulnerabilities in

1) This protocol was presented as a form of report at an ISO TC104 meeting [20].

ETRI Journal, Volume 29, Number 6, December 2007 Dong Kyue Kim et al. 757

the air interface between an eSeal and an interrogator.
According to this survey, the vulnerabilities are classified into
the following three categories [17].

- Gather (loss of confidentiality): A malicious party tries to
gain information about an eSeal by intercepting radio
signals between eSeals and interrogators, or by probing a
valid eSeal electrically.

- Mimic (loss of integrity and authenticity): A malicious party
clones an eSeal (cloning) or creates a device that cannot be
discerned from a legitimate eSeal (spoofing).

- Denial of service (loss of availability): A malicious party
disrupts the communication channel by jamming or
shielding, or disrupts the eSeal by power consumption or
physical destruction.

In order to solve the above problems, a communication
protocol between an eSeal and an interrogator should guarantee
the following security functions:

- Mutual authentication between an eSeal and an interrogator
- Data confidentiality and data integrity
- Non-repudiation of stored data
- Immunity to denial of service
- Replay protection

III. Cryptographic Primitives for eSeal Protection

1. Cryptographic Algorithms

In this section, we give preliminary information on
cryptographic primitives, which are the main building blocks
for our eSeal protection system.

A. Encryption Algorithms

To guarantee data confidentiality, an encryption algorithm
should be used. Since it is natural to assume that an eSeal has
only limited computing power, we decided to use symmetric key
encryption. In our eSeal system, we use the standard block
cipher AES [19]. The AES cipher is a substitution-permutation
network composed of iterative rounds, where each round except
the last contains four different transforms; SubBytes, ShiftRows,
MixColumns, and AddRoundKey (No MixColumns transform
is performed in the last round). While there are three allowable
key lengths, namely, 128 bits, 192 bits and 256 bits, we only
consider the first one and call it AES-128.

For realization of our eSeal protection system, it is necessary
to find an efficient way to implement AES and other related
algorithms because cryptographic operations are resource-
consuming operations in general. There have been extensive
studies on the efficient implementation of AES [8], [21]-[25],
where most of the optimization is done on the SubBytes

transform, since this is the most complex transform that involves
a finite field inversion operation on GF(28). A typical approach to
implementing this transform is to use a pre-computed table
called an S-box. An S-box maps an 8-bit input to an 8-bit output;
thus, it requires 256 elements in total. Note that if we use AES-
128, the input and output of every transform are 128 bits long.
Therefore a SubBytes transform requires sixteen table look-ups.
For hardware implementation, we can perform multiple
SubBytes transforms in parallel. As a general rule, the more S-
boxes are used in parallel, the less clock cycles are needed for
encryption [8]. For software implementation, most of the
opportunity for improvement lies in manual code optimization,
such as register reallocation and loop unrolling. Also, there is a
novel technique in which an isomorphic composite field
GF((24)2) is used instead of the original field GF(28) [21].

B. Pseudorandom Functions and Message Authentication
Codes

In addition to an encryption algorithm, we need a
pseudorandom function (PRF) to derive various keys from the
master key, and a message authentication code (MAC) for
authentication and data integrity. Actually, PRF and MAC are
closely related to each other, and there are many practical
implementations of PRF and MAC in various international
standards, many of which use hash functions or block ciphers
for the building blocks of PRF as follows.

- IKE (Internet Key Exchange) [26], [27], which is a
component of IPsec used for mutual authentication and
security association management, defines MACs and PRFs
based on hash functions and AES, such as HMAC-MD5,
HMAC-SHA1 and AES-XCBC-MAC [28], [29].

- TLS (Transport Layer Security) protocol [30] for
communication security over the Internet defines a PRF
using HMAC-MD5 and HMAC-SHA1.

- IEEE 802.11i [31] for Wireless LAN security defines a PRF
as a concatenation of HMAC-SHA1 outputs.

- IEEE 802.16e [32] standard defines a key derivation
function as iterations of CMAC or SHA-1.

In this paper, we consider hash-based MAC (HMAC) schemes
[33] using standard hash functions, such as MD5 and SHA-1. We
also consider block-cipher-based MACs, such as CBC-MAC
[34], CMAC [35], and XCBC-MAC [36], [37] using AES.
Detailed description of these schemes can be found in [1].

Note that the cryptographic strength of the above schemes is
based on the properties of the underlying primitives, namely,
block ciphers and hash functions. Since several weaknesses
were recently found in MD5 and SHA-1 [38], [39], the use of
AES-based PRFs and MACs would be preferable from the
viewpoint of security.

758 Dong Kyue Kim et al. ETRI Journal, Volume 29, Number 6, December 2007

2. Efficient Implementation

In this subsection, we present various experimental results to
implement AES and PRFs. An eSeal is equipped with a low-end
microcontroller so that it can process identification data,
shipment information, and tamper event logs. Therefore, we can
provide security functions as a form of software code optimized
for this microcontroller. Our target device for eSeal is Atmel’s
ATmega128L microcontroller2), which is a RISC processor with
32 general purpose 8-bit registers. It has a program memory of
128 KB and a data memory of 4 KB, and it operates at various
clock speeds. We chose a speed of 8 MHz, and we used
WinAVR (release 20060421) as a cross compiler. Because an
interrogator has to deal with many packets which are sent to and
from numerous eSeals around it, its computing power should be
much better than that of an eSeal. For this reason, we used
Samsung’s S3C2440A processor for the interrogator, which is a
16/32-bit RISC microprocessor based on the ARM920T core
and has a maximum 400 MHz operating speed.

A. Efficient Implementation of AES

In our software implementation of AES-128, as in typical
software implementations, we concentrated on maximizing the
throughput. By loop unrolling ten rounds of AES, we could
obtain some improvement in throughput at the expense of
program memory. Also we constructed a pre-computation table
for the xtime operation, namely, a multiplication by x over
GF(28), as well as a pre-computed S-box. Thus, we could
obtain the data given in the first two rows of Table 1.

According to our analysis of this initial implementation, the
compiled code had many load/store instructions, since it stores the
128-bit state into the data memory. Also, loading pre-computed
values for the S-box and xtime operations consumes many
machine cycles to compute the addresses of these values. This
problem seems more serious on the ATmega128L processor
because it operates at a very low clock speed. Therefore, we wrote
assembly programs for ATmega128L, in which each state is
stored in registers, not in the memory, and the addresses of pre-
computed tables are fixed so that they are not computed
repeatedly. Additionally, we tried the following modifications.

1) First, we convert the C code into a hand-written assembly
code, which is a common technique of optimization.

2) AES is composed of ten rounds, each of which has a similar
structure. In the initial version previously explained, we
unrolled this loop to speed up computation. However, loop
unrolling requires more memory to program each round
2) We do not use a more powerful processor, such as ARM 9, because ATmega128L is a

low-power microcontroller. Power consumption is very important for an eSeal system, since an
eSeal has to survive the lifetime of a freight container. Also, ATmega128L has an internal RAM
and an internal EEPROM, which saves more power.

independently. In the second modification, we removed loop
unrolling, recovering the loop structure, to reduce the
required program memory.

3) Each round of AES, except the last round, is composed of
four transforms, namely, SubBytes, ShiftRows,
MixColumns, and AddRoundKey, where SubBytes maps
each input byte into another byte according to an S-box, and
ShiftRows permutes the output bytes of SubBytes in a pre-
defined order. Hence, a common optimization technique
merges SubBytes and ShiftRows into a single transform,
which performs substitution and permutation together. Note
that this method improves both the throughput and the usage
of program memory.

4) If we represent each element in GF(28) as a polynomial with
degrees up to 7 and whose coefficients are in {0, 1}, the
MixColumns transform can be written as a matrix
multiplication as

,

111
111

111
111

3

2

1

0

3

2

1

0

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
+

+
+

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

i
i
i
i

xx
xx

xx
xx

o
o
o
o

where ij, oj (j = 0,…, 3) are polynomials with degrees up to 7.
Since this transform requires many polynomial multiplications,
a common acceleration technique for MixColumns is to pre-
compute ax × for every a∈GF(28). Thus, the initial version of
our AES implementation has two pre-computation tables, one
for the xtime operation and the other for the S-box, as
previously mentioned. However, the xtime table guarantees
less speed improvement than the S-box table. In our fourth
modification, we removed the pre-computation table for xtime
to reduce the required data memory. This modification also
reduces the program memory slightly, since there is no routine
to construct an xtime table.

The lower part of Table 1 shows the results of these

Table 1. Performance of software modules for AES-128.

Memory (B) Time (µs)

Program Data
Key

expansion Encryption

C on S3C2440A 15,204 436 3.9 5.4

C on ATmega128L 8,334 554 268.0 604.0

Method 1 4,270 512 105.0 277.1

Method 2 1,688 512 105.0 302.7

Method 3 1,660 512 105.0 293.7
Assembly on
ATmega128L

Method 4 1,528 256 103.7 339.2

ETRI Journal, Volume 29, Number 6, December 2007 Dong Kyue Kim et al. 759

Table 2. Performance of various MAC modules written in C on
ATmega128L and S3C2440A.

S3C2440A ATmega128L

Memory (B) Memory (B)

Program Data

Throughput*
(Mbps) Program Data

Throughput*
(kbps)

HMAC-MD5 5,509 632 7.71 10,498 982 18.35

HMAC-SHA1 7,741 632 7.22 5,950 1,00
3 13.33

AES-CBC-
MAC 15,633 568 16.18 8,762 554 154.22

AES-CMAC 15,897 584 11.72 9,018 570 111.30
AES-XCBC-

MAC 15,757 616 9.03 8,938 602 83.39

 * Key scheduling time is included.

experiments. Clearly, each of the four methods using hand-
written assembly codes requires a smaller amount of memory
and much less time than a module compiled from a C program.
We can observe a time-memory tradeoff between methods 1
and 2 in the table. Method 3 slightly improves both the
memory size and the execution time compared to method 2.
Removal of pre-computation tables (method 4) reduces the
amount of data memory, but the execution time increases.

B. Efficient Implementation of PRF

Next, we consider the implementation of MAC and, thus,
PRF. As explained in section III.1, we can take two categories
of MACs into account, namely, hash-based MACs and block-
cipher-based MACs. We compare the following typical
choices: HMAC-MD5 and HMAC-SHA1 for hash-based
MACs, and AES-CBC-MAC, AES-CMAC, and AES-XCBC-
MAC for AES-based MACs.

Table 2 compares the performance of MAC modules
implemented using the C language, where AES-based
algorithms use the AES routines given in the previous section.
Because we use MAC algorithms for key derivation and
authentication in our eSeal system, the input message for MAC
is very short in most cases. Therefore, we set the message
length to 256 bits, that is, 32 bytes, which is a sufficient value
for communication protocols between an eSeal and an
interrogator [9]. Table 3 shows the performance of MAC
modules using hand-written assembly modules for AES-128
over ATmega128L. In these tables, we can see that AES-based
algorithms are much faster than hash-based ones using a
comparable amount of memory, but the gain is relatively
smaller over S3C2440A than it is over ATmega128L because
the MD5 and SHA-1 algorithms have been designed to fit into
a 32-bit architecture, but AES was designed to perform well
also on an 8-bit architecture. In particular, AES-CBC-MAC

Table 3. Performance of AES-based MAC modules written in
assembly over ATmega128L.

Memory (B)

Program Data
Throughput

(kbps)

Method 1 4,636 688 371.01

Method 2 2,044 688 345.95

Method 3 2,016 688 355.56
AES-CBC-

MAC

Method 4 1,888 432 316.05

Method 1 4,806 706 266.67

Method 2 2,214 706 248.54

Method 3 2,186 706 253.47
AES-CMAC

Method 4 2,054 450 224.56

Method 1 4,776 706 195.42

Method 2 2,182 706 181.56

Method 3 2,154 706 186.86
AES-XCBC-

MAC

Method 4 2,022 450 164.10

shows the best throughput and uses the smallest amount of
memory; therefore, we use AES-CBC-MAC for our MAC and
PRF.

IV. eSeal Protection Protocol (ePP)

In this section, we present ePP and its related commands
conforming to the existing eSeal standards. We also analyze its
security features. First, we begin by introducing the overall
structure of an eSeal system.

1. Overview of an eSeal Protection System

Figure 1 shows the architecture of the proposed system. We
assume that there are two kinds of back-end servers to
support secure data management, namely, an authentication
server and a digital signature server. The authentication server
stores master keys to access eSeals, where every eSeal is
related to a distinct master key. After the interrogator obtains
the seal ID of the target eSeal using the collection method
conforming to ISO 18185-1 [9], it sends a request for a
master key to the authentication server, and acquires a proper
key related to the identified eSeal.3) The digital signature
server generates a signature to guarantee that the data inside
an eSeal is valid. Hence, the data is signed using the private

3) The problem of key distribution is important, but it is beyond the scope of this paper. The
architecture of our system is similar to that of WPA2 (Wi-Fi Protected Access 2), or IEEE
802.11i [31], which is a security framework for IEEE 802.11 Wireless LAN. Hence it can be
effectively implemented using a mechanism similar to WLAN.

760 Dong Kyue Kim et al. ETRI Journal, Volume 29, Number 6, December 2007

Fig. 1. Architecture of the proposed eSeal system.

① Collection request ISO 18185-1 coverage

Authentication
server

⑦ ePP request

⑧ ePP response

② Seal ID response

③ eSeal master key request

④ eSeal master key response

⑤ Digital signature request

⑥ Digital signature response

Interrogator eSeal
Digital

signature
server

EPP coverage

key of the sender of a freight container. Although the
signature is transferred together with data when it is uploaded
to an eSeal, this does not mean that the eSeal has the ability to
verify the digital signature. An eSeal only functions as a
signature carrier. The signature is verified by another
interrogator that reads the eSeal’s data and checks the
authenticity and integrity of the corresponding freight
container. We assume that communication between the
interrogator and the digital signature server is protected by
IPsec, and that signing and verification are performed
according to ECDSA-163 [40].

As previously explained, steps 1 to 6 in Fig. 1 can be
implemented by existing protocols. In steps 7 and 8, the
interrogator reads data from an eSeal or writes data to an eSeal
in a secure manner. The purpose of this section is to design and
analyze protocols for this part of the system. The security of
this communication is supported by a unique master key which
is hard-programmed into the eSeal. This master key should be
identical to one stored in the authentication server’s database
with that eSeal’s ID.

2. Design of New Commands

Since there are already many eSeal systems and related ISO
standards, the new ePP should conform to these existing
standards. Therefore, our ePP operations are not designed as
completely new ones, rather they are embedded into three basic
command types of eSeal standard: read, write, and alert. Our
new command codes are defined according to the existing ISO
command format [9]. Table 4 shows these new commands.
The ePP Write and ePP Read commands are used for an eSeal
and an interrogator to authenticate each other when the eSeal’s
data is accessed. These commands are always initiated by the
interrogator’s request. On the other hand, ePP Alert command
is a broadcast command initiated by an eSeal, and it is used to
generate an authentic alert to prevent a fake alert from an illegal
eSeal. All of these communications are secured using the

Table 4. ePP command codes.

Code Name Type Direction Description

ePP Write Request Interrogator→eSeal
0x51

ePP Write Response eSeal→Interrogator

Write into
eSeal’s
memory

ePP Read Request Interrogator→eSeal
0x53

ePP Read Response eSeal→Interrogator

Read from
eSeal’s
memory

0x7F ePP Alert Alert
eSeal→Interrogator

(Broadcast)
Alert

message

master key.
To guarantee the cryptographic strength of ePP, we use a

well-known authenticated encryption mode of block cipher,
namely, counter with CBC-MAC (CCM) mode of operation
[41], which is also used in the IEEE 802.11i standard [31]. This
choice is reasonable in the context of our eSeal system since
CBC-MAC shows better performance than other block-cipher-
based MACs and hash-based MACs. The CCM mode requires
encapsulation and decapsulation procedures for each packet.
We use modifications of the procedures defined in the IEEE
802.11i standard [31] and denote them as CCMe_ENCKey
(Rand, AAD, Message) and CCMe_DECKey (Rand, AAD,
Cipher), respectively, where CCMe stands for CCM for eSeal,
Key is a symmetric key for CCM, Rand is a random number
which becomes a part of the nonce, AAD is additional
authentication data, Message is a message to be encoded, and
Cipher is a ciphertext to be decoded and verified. The precise
description of these procedures will be given separately in the
next subsection.

A. ePP Write Command

Figure 2 shows the procedure for the ePP Write command,
which involves the following parameters:

- r: random number to guarantee freshness of a new session

Fig. 2. ePP Write procedure.

Interrogator eSeal

Master key KE
Random number r

Information I
Digital Signature S for I
CCMe_ENCKE(r, S, I)

ePP Write-Request

r, S, and I
Date/Time DT and Int. ID IID
CCMe_ENCKE(r+1, Null, DT)

ePP Write-Response

Failure Error handling (e.g., discard)

Date/Time DT

Success

Failure

Request header D(encrypted I) MIC CRC Sr

Master key KE

Error handling (e.g., request again)

Response header D(encrypted DT) MIC CRCr+1

Success

fresh r ?
CCMe_DECKE(r, S, D)

CCMe_DECKE(r+1, Null, D)

ETRI Journal, Volume 29, Number 6, December 2007 Dong Kyue Kim et al. 761

Fig. 3. Packet format for the ePP Write command.

2 B Max 234 B 1 B 2 B 2 B 1 B 2 B 4 B 2 B 1 B 1 B
0x80

CRC Command
arguments

Argument
length

Max command
duration

Min command
duration

Command
code

Interrogator
ID Tag ID Tag

manufacture ID
Packet
options Protocol ID

2 B 32 B 1 B 4 B 2 B 2 B 1 B 2 B 0x80

CRC Data Command
Code Tag IDTag

manufacture ID
Interrogator

ID
Packet
length

Seal
status Protocol ID

Interrogator to eSeal (request)

eSeal to interrogator (response) 0x51

0x51

r, S, encrypted I, MIC

r+1, encrypted DT, MIC

- KE: master key
- I: confidential information to be protected
- S: digital signature for I
- DT: current date and time
- D: encrypted value for either I or DT
- IID: interrogator ID

The message integrity code is denoted by MIC, and CRC
stands for cyclic redundancy check.

The ePP Write procedure is a two-way handshake protocol
including the ePP Write-Request and ePP Write-Response. The
ePP Write-Request includes the ePP packet header, which
delivers the seal ID and the interrogator ID, and it also includes
r, S, D, MIC, and CRC. Each step of the ePP Write procedure
is performed as follows.

Step 1. Interrogator (request)
- Obtain the master key KE from the authentication server.
- Generate a random number r.
- Prepare confidential information I.
- Get the digital signature S for I from the digital signature

server.
- Perform the CCMe_ENC function to encrypt I and calculate

MIC for I and S. We use S as AAD of CCM encapsulation.
- Send the ePP Write-Request command as shown in Fig. 2.

Step 2. eSeal (response)
- Receive the ePP Write-Request command.
- Perform CCMe_DEC function to decrypt the ciphertext D

and verify MIC. We should use the same random number r
and the same AAD S as in the encapsulation procedure
performed by the interrogator.

- If decryption fails or if there is already a stored random
number equal to r, this command is discarded.

- Store r, S, and I.
- Record the current data/time, DT, and IID.
- Increase r by 1.
- Perform the CCMe_ENC function to encrypt DT and

calculate MIC for DT.

- Send the ePP Write-Response as shown in Fig. 2.
Step 3. Interrogator

- Receive the ePP Write-Response.
- Perform the CCMe_DEC function to decrypt the ciphertext D.
- If decryption fails, then the response is discarded.
- Record the decrypted DT.

Figure 3 shows the packet format for the ePP Write
Information command, which conforms to the ISO command
format [9]. The gray boxes show newly defined values.

B. ePP Read Command

The second ePP operation is ePP Read, which is depicted in
Fig. 4. We omit the procedure and packet format of ePP Read,
since they are similar to those of ePP Write.

C. ePP Alert Command

The last ePP operation is ePP Alert, which is shown in Fig. 5.
The procedure of ePP Alert is performed as follows.

Step 1. eSeal (Alert)
- Generate a random number r.

Fig. 4. ePP Read procedure.

Interrogator

Master key KE
Random number r

Date/Time DT
CCMe_ENCKE(r, r, DT)

ePP Read-Request

r
Date/Time DT and Int. ID IID

CCMe_ENCKE(r+1, S, I)

ePP Read-Response

 Error handling (e.g., discard)

S and I
Date/Time DT

Success

Failure

Request header D(encrypted DT) MIC CRC r

Master key KE

Error handling (e.g., request again)

Response header D(encrypted I) MIC CRCr+1 S

eSeal

Failure

Success

fresh r ?
CCMe_DECKE(r, r, D)

CCMe_DECKE(r+1, S, D)

762 Dong Kyue Kim et al. ETRI Journal, Volume 29, Number 6, December 2007

Fig. 5. ePP Alert procedure.

Master key KE
Random number r
Alert message A

CCMe_ENCKE(r, Null, A)

ePP Alert

r
Report to manager

Error handling (e.g., discard)

Alert header D(encrypted A) MIC CRCr

Master key KE

Interrogator eSeal

Failure

Success

fresh r ?
CCMe_DECKE(r, Null, D)

- Prepare an alert message A.
- Perform the CCMe_ENC function to encrypt A and

calculate MIC for A.
- Send the ePP Alert packet.

Step 2. Interrogator (alert management)
- Receive the ePP Alert message.
- Obtain the master key KE from the authentication server.
- Perform the CCMe_DEC function to recover A.
- If the decryption fails or there is a stored random number

equal to the received r, then the alert message is discarded.
- Store r, and report the alert to the manager.

3. Cryptographic Functions for ePP

Figure 6 shows an example of CCMe encapsulation which is
performed by an interrogator to initiate an ePP Write operation.
The interrogator generates a write request for Message by
encrypting it using AES-CCM (part (A) in the figure) with a
random number r and additional authentication data, namely, a
digital signature S for Message. As well as an encrypted message
Ciphertext, an MIC is generated (part (A)), expanding the
original packet size by 8 bytes (part (B)). Then, CRC is
appended after the MIC (part (C))4). The CCMe decapsulation
procedure can be defined as a counterpart to the CCMe
encapsulation procedure. For a more detailed description, see [2].

According to the preceding description, the following
primitives should be implemented for ePP:

- pseudorandom number generator (PRNG) to generate r
- AES-128 and its counter and CBC modes for CCM

encryption/decryption
- PRF to derive a mutual transient key (MTK) from a master

key

For the first item, we can reuse the PRNG used for other
eSeal operations, such as anti-collision and collection, and it
can be realized using various methods based on hardware or

4) Although CRC also increases the packet size, this is not an overhead, since every eSeal
command packet should contain a CRC even when we do not use ePP.

Fig. 6. Generation of an ePP Write-Request packet using
CCMe_ENCKE (r, S, Message).

ePP packet header Message to be encryptedBefore
encryption

ePP packet header Ciphertext
After

encryption MIC CRC

||

CCM
encryption

 CRC

Plaintext ePP
packet

Random r (8B)Master key KE
(16B)

ePP packet header + r (8B) + S (42B)

(C)
ePP packet

Construct
nonce

Nonce
(13B)

MTK
(16B)

Message

AAD S (42B)

(A) (B)

(A) (B)
(C)

PRF
(AES-128)

S r

S r

Seal ID(6B), Int. ID(2B) ||

software. The software implementation of AES-128 using C
and assembly languages was provided in section III.2, and
various PRFs based on hash functions and AES modes of
operations were compared. As demonstrated in section III.2,
AES-CBC-MAC is the most efficient. The key derivation
procedure using PRF is defined as

MTK = AES-CBC-MACKE(r || seal ID || interrogator ID),

where KE is a 128-bit master key, r is a 64-bit random number,
and the seal ID and interrogator ID are 6 and 2 bytes long,
respectively. Therefore, this is actually AES encryption of a
single message block. An MTK is refreshed for every packet.
Finally, a 13-byte nonce is constructed by concatenating r, the
three most significant bytes of the seal ID, and the 2-byte
interrogator ID.

4. Security Analysis

In this section, we analyze the security features of the
proposed ePP using the terms given in section II.

A. Mutual Authentication

This security service is for the ePP Write and ePP Read
operations. The eSeal and the interrogator can authenticate
each other by proving to have driven the same MTK from the
same pre-shared master key to generate the MIC.

B. Data Confidentiality and Data Integrity

Since we encrypt the private data I using MTK, and this
MTK should be derived from the master key, an eavesdropper
who does not know the master key cannot understand I. The
encryption is done with the CCM mode of AES, which also
supports message authentication. Thus, an attacker who does
not know the master key can neither generate a fake message
nor change the content of a message.

ETRI Journal, Volume 29, Number 6, December 2007 Dong Kyue Kim et al. 763

C. Non-repudiation of Stored Data

In our protocol, only the party who has permission to write
the confidential information I should be able to generate a
digital signature S using its own private key. The digital
signature server shown in Fig. 1 plays the role of the owner of
the private key, and delegates the interrogator to write I and the
corresponding S to the eSeal. The connection between the
interrogator and the digital signature server is protected through
a secure channel. An eSeal does not verify a digital signature. It
functions as a carrier of the signature.

D. Partial Immunity to Denial of Service

Although DoS cannot be prevented completely, it can be
mitigated by ePP, since ePP will not proceed any further after
an integrity check fails.

E. Partial Replay Protection

An eSeal and an interrogator hold a list of the previously
used random numbers and compare the received random
numbers with previously stored values. Hence, a reused
message can be detected. However, since the memory of the
eSeal is restricted, it cannot store the complete list of random
numbers.

V. Performance Analysis

1. Testbed for eSeal Protection System

In this section, we estimate the performance of our eSeal
protection system. First, we introduce an eSeal platform
implemented in our previous work [18] as a test bed for
performance evaluation. In this platform, the interrogator and
the eSeal were implemented in accordance with ISO 18185-1
and ISO 18185-7 [9], [14]. Figure 7 shows the block diagram
for the hardware of the interrogator and the eSeal.

The interrogator is equipped with a Samsung microprocessor
(S3C2440A), a Chipcon RF transceiver (CC1020), a 64 MB
SDRAM, a 16 MB flash memory, an Ethernet controller, and
other peripheral components. The S3C2440A is a 16/32-bit
RISC microprocessor based on the ARM920T core and has a
maximum operating speed of 400 MHz. It embeds a real time
clock (RTC) unit, and the only external RTC component
required is a 32.768 kHz crystal. The RTC function is
necessary for an eSeal system that includes the ePP operations.
The RF transceiver, which is controlled by the microprocessor,
allows the interrogator to communicate with the eSeal using
the 433.92 MHz frequency. The interrogator provides a 10
Mbps Ethernet interface and an RS-232 serial interface.
Through these interfaces, the interrogator receives

Fig. 7. Block diagram of the hardware of the interrogator and the
eSeal.

Ethernet
interface

RS-232
interface

Microprocessor
(S3C2440A)

SDRAM

Flash
memory

32.768 kHz
Crystal

SPI

Data

Interrogator

interface

RS 232
interface

RTC
chip

eSeal

Microcontroller
(ATmega128L)

RF
transceiver
(CC1020)

SPI

Data
interface

RF
transceiver
(CC1020)

commands from and sends responses to a host system. The
interrogator software modules are implemented using the C
language based on the embedded Linux (kernel version: 2.4.20),
which was ported to the microprocessor of the interrogator.

The eSeal is equipped with an Ateml microcontroller
(ATmega128L); a Chipcon RF transceiver (CC1020), which is
the same as the one used in the interrogator; an RTC chip; and
other components. The eSeal is powered by two 1.5 V AA
batteries. It also has an RS-232 serial interface to monitor the
function of the eSeal. The eSeal software modules are
implemented using the C language, with the exception of
cryptographic algorithms, which are implemented in part using
the assembly language.

For cryptographic operations performed in the interrogator
and the eSeal, we use the software modules implemented in
section III. The implemented interrogator and eSeal work in
accordance with ISO 18185-4 as well as ISO 18185-1 and ISO
18185-7 [13], [9], [14]. In addition, so that the interrogator may
support the IPsec protocols, we ported the IPsec software
modules to it, including the IKEv2 software modules.

We measured the timing for processing ePP and analyzed the
processing overheads in both the interrogator and the eSeal. In
our experiments, the processes for digital signatures were not
included in the ePP procedures. We also assumed that an
interrogator already has the seal ID of a target eSeal. Figure 8
shows the experimental environment for performance
evaluation of ePP. As explained above, the microprocessor

764 Dong Kyue Kim et al. ETRI Journal, Volume 29, Number 6, December 2007

Fig. 8. Experimental environment for performance evaluation of
ePP.

Et
he

rn
et

 in
te

rfa
ce

RF
 in

te
rfa

ce

Authentication
server (laptop)

Micro-
processor

TCP/IP
communication

433 MHz RF
communication

Terminal program

eSeal

Interrogator

RS-232 interface

………
….

(S3C2440A) in the interrogator operates at 400 MHz and the
microcontroller (ATmega128L) in the eSeal operates at 8 MHz.

For the experiments, we developed a simple authentication
server on a laptop to provide the master key corresponding to
the Seal ID. The laptop was equipped with a 2.0 GHz Intel
Pentium 4 CPU and 512 MB RAM. It operated with Linux
Fedora Core 3 (kernel version: 2.6.9). The interrogator was
directly connected to the authentication server through 10
Mbps Ethernet without a switch. A 10 Mbps Ethernet
connection was sufficient for our platform, since the amounts
of transmitted data were very small, such as 6 bytes or 16 bytes.

2. Latency in the Backend Communications

Before ePP is processed, the interrogator must acquire the
master key corresponding to the seal ID from an authentication
server. We measured the time required for this process for two
cases, one using common TCP/IP communication and the
other using IPsec-enabled TCP/IP communication. The
interrogator sent the 6-byte eSeal ID to the authentication
server and received the 16-byte master key from the server.
Table 5 shows the total latency for the interrogator to acquire
the master key in the two cases.

The latency with IPsec is approximately 36 µs longer than
that using common TCP/IP communication because the
processing time for the IPsec protocols is added. Thus, the
processing time for the IPsec protocols is much less than the
latency of TCP/IP communication. In a real communication
environment, the latency of TCP/IP communication is not
measured in microseconds but in milliseconds. With high
communication latencies, the processing time of the IPsec
protocols in the interrogator can be disregarded, although the

Table 5. Latency for the interrogator to acquire the master key.

Feature Latency

Using common TCP/IP communication 592 µs

Using IPsec-enable TCP/IP communication 628 µs

latency of TCP/IP communication itself may cause a
bottleneck in the ePP performance in the interrogator. However,
in future network environments with low communication
latencies, the processing time for the IPsec protocols in the
interrogator may become significant.

3. Analyses of Processing Overheads in Interrogator and eSeal

To analyze the processing overheads of ePP, we measured
the time spent in processing ePP in both the interrogator and
the eSeal. For experimental purposes, we revised our ePP so
that only confidential information I is encrypted; thus, in ePP
Write-Response and ePP Read-Request, DT is not encrypted,
but transmitted plain. There are no MICs for these packets.

Figure 9 shows the processing times for the two ePP
commands in the interrogator. The processing of ePP proceeds
as follows: (1) the interrogator generates the ePP Request
packet (xx_Packet); (2) the interrogator performs the CCMe
encapsulation of the ePP Request packet (xx_Enc); (3) the
interrogator sends the ePP Request packet to the eSeal and the
eSeal processes it and returns the ePP Response packet (xx_RF
and xx_eSeal); (4) the interrogator performs the CCMe
decapsulation of the received ePP Response packet (xx_Dec).

As shown in Fig. 9, the total processing time of ePP
(xx_Total), which is the sum of xx_RF, xx_eSeal, xx_Packet,
xx_Enc, and xx_Dec, is proportional to the amount of
confidential data exchanged between the interrogator and the
eSeal. However, as the amount of data increases, the
processing times of the cryptographic operations for ePP
(xx_Enc and xx_Dec) do not increase much, or stay constant.
Moreover, xx_Enc and xx_Dec are much less than the time for
RF communication between the interrogator and the eSeal
(xx_RF) or the processing times of ePP in the eSeal (xx_eSeal).
This proves that ePP is a light-weight protocol. Therefore,
ePP operations in the interrogator incur very few processing
overheads.

Figure 10 shows the processing time of the two ePP
commands in the eSeal. The total processing time of ePP
(xx_Total), which is the sum of xx_Packet, xx_Dec, and
xx_Enc, is the same as xx_eSeal in Fig. 9. The eSeal performs
the CCMe decapsulation of the received ePP Request packet
(xx_Dec), generates the ePP Response packet (xx_Packet), and
performs the CCMe encapsulation of the ePP Response packet
(xx_Enc).

As shown in Fig. 10, xx_Total is proportional to the amount
of confidential data exchanged between the interrogator and
the eSeal. However, while the interrogator has sufficient
processing power, the eSeal’s processing power is limited. For
that reason, as the amount of confidential data increases, the
processing times of the cryptographic operations for ePP

ETRI Journal, Volume 29, Number 6, December 2007 Dong Kyue Kim et al. 765

Fig. 9. Processing time of the two ePP commands in the
interrogator.

0

20,000

40,000

60,000

80,000

100,000

120,000

16 32 48 64 80 96 112 128 144 160
Write Data (B)

Ti
m

e
(μ

s)

Write_Total Write_RF Write_eSeal

100

300

500

700

900

1,100

16 32 48 64 80 96 112 128 144 160
Write Data (B)

Ti
m

e
(μ

s)

Write_Packet Write_Enc Write_Dec

0

20,000

40,000

60,000

80,000

100,000

120,000

16 32 48 64 80 96 112 128 144 160
Read Data (B)

Ti
m

e
(μ

s)

Read_Total Read_RF Read_eSeal

(a) ePP Write

100

300

500

700

900

1,100

16 32 48 64 80 96 112 128 144 160
Read Data (B)

Ti
m

e
(μ

s)

Read_Packet Read_Enc Read_Dec

(b) ePP Read

(xx_Enc and xx_Dec) also increase. For ePP Write, as more
confidential data is received from the interrogator, more
processing time is required for the CCMe decapsulation of the
ePP Write-Request packet (Write_Dec). For ePP Read, as more
confidential data is sent to the interrogator, more processing time
is required for the CCMe encapsulation of the ePP Read-
Response packet (Read_Enc). On the other hand, the ePP Write

Fig. 10. Processing time of the two ePP commands in the eSeal.

0
2,000

4,000
6,000

8,000
10,000
12,000

14,000
16,000

18,000
20,000

16 32 48 64 80 96 112 128 144 160
Write Data (B)

Ti
m

e
(μ

s)

Write_Total Write_Packet Write_Dec Write_Enc

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000
20,000

16 32 48 64 80 96 112 128 144 160
Read Data (B)

Ti
m

e
(μ

s)

Read_Total Read_Packet Read_Dec Read_Enc

(a) ePP Write

(b) ePP Read

Response packet and the ePP Read-Request packet contain no
confidential data, and their sizes are fixed; therefore, their
processing times stay constant, independently of the amount
of confidential data to be written or read (Write_Enc and
Read_Dec).

VI. Concluding Remarks

In this paper, we presented the design and implementation of
an electronic seal protection system. We identified security
requirements for the eSeal system, and proposed the eSeal
Protection Protocol based on the standard block cipher AES.
Our security analysis shows that ePP satisfies the security
requirements. We implemented various cryptographic
primitives as building blocks for our protocol, and evaluated
the performance of ePP on a real-world test bed using these
primitives. Our evaluation shows that ePP guarantees a
sufficient performance over an ARM9-based interrogator.

However, processing ePP in an eSeal requires several
milliseconds, even if we implement the cryptographic
algorithms using the reasonably optimized assembly routines
given in section III. The turn-around time in the eSeal system
should be less than 1 ms to conform to the ISO 18185-7

766 Dong Kyue Kim et al. ETRI Journal, Volume 29, Number 6, December 2007

standard [14]. To address this problem, we could use a more
powerful processor such as ARM9, but enhancing the
computing power would increase the power consumption of an
eSeal. Since an eSeal has to survive for a long period, at least
during the transport time of freight containers, the power
consumption issue is critical; therefore, the most economic
solution would be to loosen the turn-around timing
requirements defined in the ongoing ISO 18185 standard.

If modification of the standard is not acceptable for other
reasons, we can use a dedicated hardware for AES-128. Then,
we can significantly reduce packet processing time, since it
accelerates AES-CCM for encryption and MIC generation, and
also accelerates the key derivation using AES-CBC-MAC. In
the preliminary version of this paper [1], we provided various
FPGA modules for AES, and their throughputs are over 400
Mbps, which seems to easily solve the problem. Finally, there
is an extensive literature on low power implementation of
cryptographic hardware. For example, [42] would be a useful
reference.

References

[1] M.K. Lee, J.K. Min, S.H. Kang, S.H. Chung, H. Kim, and D.K. Kim,
“Efficient Implementation of Pseudorandom Functions for
Electronic Seal Protection Protocols,” International Workshop on
Information Security Applications-WISA 2006, LNCS, vol. 4298,
Springer, 2007, pp. 173-186.

[2] Y. Kang, H. Kim, and K. Chung, “Design of Lightweight Security
Protocol for Electronic Seal Data Protection,” Pre-Proceedings of
WISA 2006, 2006, pp. 517-531.

[3] A. Juels, R. Rivest, and M. Szydlo, “The Blocker Tag: Selective
Blocking of RFID Tags for Consumer Privacy,” Proceedings of the
10th ACM Conference on Computer and Communications Security,
2003, pp. 103-111.

[4] S.A. Weis, Security and Privacy in Radio-Frequency Identification
Devices, Master’s Thesis, Massachusetts Institute of Technology,
2003.

[5] M. Ohkubo, K. Suzuki, and S. Kinoshita, “Cryptographic Approach
to ‘Privacy-Friendly’ Tags,” RFID Privacy Workshop, 2003.

[6] A. Juels, “Minimalist Cryptography for Low-Cost RFID Tags,” The
4th Int’l Conf. Security in Communication Networks-SCN 2004,
LNCS, vol. 3352, Springer, 2004, pp. 149-164.

[7] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Universal Re-
encryption for Mixnets,” CT-RSA 2004, LNCS, vol. 2964, Springer,
2004, pp. 163-178.

[8] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong
Authentication for RFID Systems Using AES Algorithm,”
Cryptographic Hardware and Embedded Systems-CHES 2004,
LNCS, vol. 3156, Springer, 2004, pp. 357-370.

[9] ISO 18185-1, Freight Containers - Electronic Seals - Part 1:

Communication Protocol, ISO, 2006.
[10] ISO 17712, Freight Containers - Mechanical Seals, ISO, 2003.
[11] ISO 18185-2, Freight Containers - Electronic Seals - Part 2:

Application Requirements, ISO, 2005.
[12] ISO 18185-3, Freight Containers - Electronic Seals - Part 3:

Environmental characteristic, ISO, 2005.
[13] ISO 18185-4, Freight Containers - Electronic Seals - Part 4: Data

Protection, ISO, 2006.
[14] ISO 18185-7, Freight Containers - Electronic Seals - Part 7:

Physical Layer, ISO, 2006.
[15] S. Park, M.K. Lee, D.K. Kim, K. Park, Y. Kang, S. Lee, H. Kim, and

K. Chung, “Design of an Authentication Protocol for Secure
Electronic Seals,” Cybernetics, Informatics and Systemics 2005,
2005, pp. 47-51.

[16] Motorola, Inc., “Second Report of Detailed Container Use Cases and
Deficiencies in the ISO 18185-1, ISO 18185-7, and ISO 18000
Standard,” 2005, available at http://www.autoid.org/tc104_sc4_
wg2.htm (sc4wg2n0233).

[17] T. Drake and J. Reinold, “ISO Study: Vulnerabilities and Threats for
Container Identification Tags and e-Seals,” 2005, available at
http://www.autoid.org/tc104_sc4_wg2.htm (sc4wg2n0225).

[18] W.J. Yoon, S.H. Chung, H. Kim, and S.J. Lee, “Implementation of a
433 MHz Active RFID System for U-Port,” The 9th International
Conference on Advanced Communication Technology, 2007.

[19] FIPS Publication 197, Advanced Encryption Standard, NIST, 2001.
[20] Electronics and Telecommunications Research Institute, “Report of

ePP (eSeal Protection Protocol) for ISO 18185-4,” 2005, available at
http://www.autoid.org/tc104_sc4_wg2.htm (sc4wg2n0254).

[21] A. Rudra, P. Dubey, C. Jutla, V. Kumar, J. Rao, and P. Rohatgi,
“Efficient Rijndael Encryption Implementation with Composite
Field Arithmetic,” Cryptographic Hardware and Embedded
Systems - CHES 2001, LNCS, vol. 2162, Springer, 2001, pp. 171-
184.

[22] P. Chodowiec and K. Gaj, “Very Compact FPGA Implementation of
the AES Algorithm,” Cryptographic Hardware and Embedded
Systems - CHES 2003, LNCS, vol. 2779, Springer, 2003, pp. 319-
333.

[23] S. Mangard, M. Aigner, and S. Dominikus, “A Highly Regular and
Scalable AES Hardware Architecture,” IEEE Transactions on
Computers, vol. 52, no. 4, 2003, pp. 483-491.

[24] K. Aoki and H. Lipmaa, “Fast Implementation of AES Candidates,”
Third AES Candidate Conference - AES3, 2000, available at
http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/aes3papers.html.

[25] T. Wollinger, M. Wang, J. Guajardo, and C. Paar, “How Well Are
High-End DSPs Suited for AES Algorithms?” Third AES
Candidate Conference - AES3, 2000, available at http://csrc.nist.gov/
CryptoToolkit/aes/round2/conf3/aes3papers.html.

[26] RFC 2409, The Internet Key Exchange (IKE), IETF, 1998.
[27] RFC 4306, Internet Key Exchange (IKEv2) Protocol, IETF, 2005.
[28] RFC 4109, Algorithms for Internet Key Exchange, Version 1 (IKEv1),

ETRI Journal, Volume 29, Number 6, December 2007 Dong Kyue Kim et al. 767

IETF, 2005.
[29] RFC 4307, Cryptographic Algorithms for Use in the Internet Key

Exchange Version 2 (IKEv2), IETF, 2005.
[30] RFC 4346, The Transport Layer Security (TLS) Protocol, Version 1.1,

IETF, 2006.
[31] IEEE Std. 802.11i, IEEE Standard for Information Technology -

Telecommunications and Information Exchange between Systems -
Local and Metropolitan Area Networks - Specific Requirements -
Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, Amendment 6: Medium
Access Control (MAC) Security Enhancement, IEEE, 2004.

[32] IEEE Std. 802.16e, IEEE Standard for Local and Metropolitan Area
Networks - Part 16: Air Interface for Fixed and Mobile Broadband
Wireless Access Systems - Amendment 2: Physical and Medium
Access Control Layers for Combined Fixed and Mobile Operation
in Licensed Bands and Corrigendum 1, IEEE, 2006.

[33] RFC 2104, HMAC: Keyed-Hashing for Message Authentication,
IETF, 1997.

[34] FIPS Publication 113, Computer Data Authentication, NIST, 1985.
[35] NIST Special Publication 800-38B, Recommendation for Block

Cipher Modes of Operation: The CMAC Mode for Authentication,
NIST, 2005.

[36] RFC 3566, The AES-XCBC-MAC-96 Algorithm and Its Use With
IPsec, IETF, 2003.

[37] RFC 4434, The AES-XCBC-PRF-128 Algorithm for the Internet Key
Exchange Protocol (IKE), IETF, 2006.

[38] X. Wang and H. Yu, “How to Break MD5 and Other Hash
Functions,” Advances in Cryptology - Eurocrypt 2005, LNCS, vol.
3494, Springer, 2005, pp. 19-35.

[39] X. Wang, Y.L. Yin, and H. Yu, “Finding Collisions in the Full SHA-
1,” Advances in Cryptology - Crypto 2005, LNCS, vol. 3621,
Springer, 2005, pp. 17-36.

[40] ANSI X9.62, Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),
ANSI, 1998.

[41] RFC 3610, Counter with CBC-MAC (CCM), IETF, 2003.
[42] S. Kumar, K. Lemke, and C. Paar, “Some Thoughts About

Implementation Properties of Stream Ciphers,” State of the Art of
Stream Ciphers Workshop – SASC, 2004, available at
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/
publications/sasc_klp.pdf.

Dong Kyue Kim received the BS, MS, and
PhD degrees in computer engineering from
Seoul National University in 1992, 1994, and
1999, respectively. From 1999 to 2005, he was
an assistant professor in the Division of
Computer Science and Engineering at Pusan
National University. He is currently an associate

professor in the Division of Electronics and Computer Engineering at
Hanyang University, Korea. His research interests are in the areas of
embedded security systems, crypto-coprocessors, and information
security.

Mun-Kyu Lee received the BS and MS
degrees in computer engineering from Seoul
National University in 1996 and 1998, and the
PhD degree in electrical engineering and
computer science from Seoul National
University in 2003. From 2003 to 2005, he was
a senior engineer at ETRI. He is currently with

the School of Computer Science and Engineering at Inha University,
Korea. His research interests are in the areas of information security
and theory of computation.

You Sung Kang received the BS and MS
degrees in electronics engineering from
Chonnam National University in 1997 and
1999, respectively. He is now pursuing his PhD
in electrical and electronic engineering from
Korea Advanced Institute of Science and
Technology (KAIST). In November 1999, he

joined Electronics and Telecommunications Research Institute (ETRI),
and he is now a senior engineer. Since 2004, he has been the IT
international standard expert of Telecommunications Technology
Association (TTA). His research interests include the areas of
RFID/USN security, wireless LAN security, cryptographic protocol
and network security.

Sang-Hwa Chung received the BS degree in
electrical engineering from Seoul National
University in 1985, the MS degree in computer
engineering from Iowa State University in 1988,
and the PhD degree in computer engineering
from the University of Southern California in
1993. He was an assistant professor in the

Electrical and Computer Engineering Department at the University of
Central Florida from 1993 to 1994. He is currently a professor in the
Computer Engineering Department at Pusan National University,
Korea. His research interests are in the areas of computer architecture
and high-performance computer networking.

768 Dong Kyue Kim et al. ETRI Journal, Volume 29, Number 6, December 2007

Won-Ju Yoon is a PhD candidate in the
Computer Engineering Department at Pusan
National University. He received his BS and
MS degrees in computer engineering from
Pusan National University in 2002 and 2004,
respectively. His research interests include
active RFID systems and wireless mesh

networks.

Jung-Ki Min received his BS and MS degrees
from the Computer Engineering Department of
Pusan National University in 2005 and 2007,
respectively. He is currently an engineer with
the Gate Technologies Company. His research
interests are in the areas of information security
systems.

Howon Kim received the BS degree in
electronic engineering from Kyungpook
National University, Daegu, Korea, in 1993,
and the MS and PhD degrees in electronic and
electrical engineering from Pohang University
of Science and Technology (POSTECH),
Pohang, Korea, in 1995 and 1999, respectively.

From July 2003 to June 2004, he studied at the COSY group at the
Ruhr-University of Bochum, Germany. He is currently a senior
member of the technical staff with the Electronics and
Telecommunications Research Institute (ETRI), Daejeon, Korea. His
research interests include RFID technology, sensor networks, and
information security. He is a member of the IEEE, IEEE Computer
Society, and IACR. He is also an editor of ISO 24791-6 and ITU-T
x.rfidsec-1.

