
ETRI Journal, Volume 29, Number 4, August 2007 Chankyu Park et al. 477

In recent years, numerous studies have identified and
explored issues related to web-service-oriented business
process specifications, such as business process execution
language (BPEL). In particular, business rules are an
important cross-cutting concern that should be
distinguished from business process instances. In this
paper, we present a rule-based aspect oriented
programming (AOP) framework where business rule
aspects contained in business processes can be effectively
separated and executed. This is achieved by using a
mechanism of the business rule itself at the business rule
engine instead of using existing programming language-
based AOP technologies. Through some illustrative
examples, this work also introduces a method by which
business rule aspects, separated through an external rule
engine, can be represented and evaluated. We also
demonstrate how they can be dynamically woven and
executed by providing an implementation example which
uses two open-source-based products, the Mandarax rules
engine and Bexee BPEL engine.

Keywords: AOP, business rules, business process, BPEL.

Manuscript received May 26, 2006; revised May 16, 2007.
Chankyu Park (phone: + 82 42 860 6708, email: parkck@etri.re.kr), Hyun-Kyu Cho (email:

hkcho@etri.re.kr), and Joo-Chan Sohn (email: jcsohn@etri.re.kr) are with Intelligent Robot
Research Division, ETRI, Daejeon, S. Korea.

Ho-Jin Choi (email: hjchoi@icu.ac.kr), Danhyung Lee (email: danlee@icu.ac.kr), and
Sungwon Kang (email: kangsw@icu.ac.kr) are with the Department of Software Engineering,
Information and Communications University, Daejeon, S. Korea.

I. Introduction

The standards of business process execution language
(BPEL), Web service choreography interface (WSCI), and
business process modeling language (BPML) address common
application requirements in an open, portable, and standard
manner [1]-[3]. These languages define a business process
which determines the logical dependencies between the
composed web services. The process specifies the control flow
of invocations and methods for data transfer between them.

If an organization is facing the challenge of attaining greater
agility in its business processes, ideally it would like to quickly
respond to competition and changes in regulations and change
the behavior of its processes without modifying or redeploying
the business process. It should also consider using business
rules as part of its process architecture [4], [5].

One of the drawbacks of process-oriented languages is a lack
of adaptability, in that the composition is predefined, static, and
does not evolve because there is no support for dynamic
process change in their specifications. The only method to
accept change is to sequentially stop the currently running
process, modify the process definition itself, and then redeploy
the changed business process to a business process execution
engine [4].

Several previous studies related to these problems have been
carried out in two areas, objected-oriented language level and
extension of business processes specifications [4], [5]. These
works are based on an aspect-oriented programming (AOP)
framework. The implementation of business rules tends to cut
across several activities of a process definition. Using AOP
frameworks provides a means to modularize cross-cutting
concerns. They are known to be valuable for modularity and

Knowledge-Based AOP Framework for Business
Rule Aspects in Business Process

Chankyu Park, Ho-Jin Choi, Danhyung Lee, Sungwon Kang,
Hyun-Kyu Cho, and Joo-Chan Sohn

478 Chankyu Park et al. ETRI Journal, Volume 29, Number 4, August 2007

flexibility [4].
A common concept underlies recent studies. The core

composition specification only defines the basic control and
data flow between the services to be composed using process-
based approaches, whereas business rules which are subject to
change are modularized in separated units, such as concrete
rules.

To concretize these ideas, concrete business rules are
implemented as aspects by using AOP language-based object-
oriented languages, such as AspectJ or JAsCo [6], [7]. Some
studies investigate how concepts from the business rule world
relate to AOP concepts. They describe the ways in which
business rules can be implemented by using aspect-oriented
extensions of BPEL, such as AO4BPEL (aspect oriented
extension for BPEL) [8]. However, they do not sufficiently
support the concepts of business rules since their definitions of
business rules are implemented using AOP languages instead
of business rule languages. Thus, these studies fail to fully
provide functionalities of business rules or a proper integration
example between a business rule engine (BRE) and a process
execution engine which can execute a BPEL process [8].

In order to address these problems, we propose a rule-based
AOP framework to employ business rules for actual aspects
without using the existing AOP technologies. The framework
also outlines a method to integrate rule-based knowledge,
accessible through a BRE, with a process orchestration engine
compatible with BPEL. To this end, we use a rule join point
model (RJPM), which can support AOP concepts in terms of
pointcuts and actions, and we extend the process orchestration
engine in terms of dynamic weaving and aspect awareness.

The remainder of the paper is organized as follows. Section
II provides a short overview of background related to AOP and
business rules. Section III discusses problems and limitations
of current approaches. Section IV details the proposed
approach and describes its implementation. Section V
concludes the paper.

II. Background

A business rule has been defined by the Business Rules
Group as a statement that defines some aspect of a business [9].
A significant characteristic of business rules is that they have a
tendency to change whenever business policies change, which
is more often than the core application functionality changes
[9], [10]. When business policies are more complex, it is
helpful to explicitly extract business rules from them in
business processes.

For example, the business rule: “If the number of
transactions of a customer is more than 10 in the year 2005,
then his/her grade is ‘VIP’” and “If the grade of a customer is

VIP, then the customer receives a 20% discount coupon” is a
kind of logical inference. In order to evaluate whether the grade
of a customer is VIP, we need to evaluate the other rules and
perform additional computations, for example, by querying
customer information from a database. Additionally, if the
customer qualifies as a VIP, the next rule should be chained
and evaluated. After the two rules are evaluated, the customer
can actually receive the discount coupon. The functionalities of
the business rules previously discussed are not specified in
BPEL. Any activity related to control and decision in BPEL
can be a candidate for a business rule and can be separated
from core process definition. In real business, these control
activities actually have the characteristics of a business rule,
and the same patterns or business rules repeatedly occur in a
BPEL process. We can regard these rules or patterns as cross-
cutting concerns.

III. Problem Statement

In terms of AOP, business rules are typical examples of
cross-cutting concerns [5]. Therefore, it is important to separate
business rules from the core business processes, and to trace
business rules to business policies and decisions. On the other
hand, in terms of knowledge base management, business rules
are pieces of knowledge about the business. As such, it is not
appropriate to bury that knowledge deep in code where no one
can identify it [11].

To date, only simple business rules, which do not support
inferences and other inherent functionalities of rules, can be
represented using basic BPEL elements. However, these can be
scattered and tangled if business logics become complex, since
the current BPEL specification does not support such AOP
concepts [8]. Some studies have found that the modularity and
adaptability of process definitions can be enhanced defining a
separate rule aspect as a rule [8]. However, such a rule aspect
definition as BPEL has a limitation in terms of describing
functionalities of business rules. In order to attain the full
functionalities of business rules, it is necessary to consider how
to integrate a BRE. Currently, there is no standard method to
integrate rules with a BRE. Although a BPEL engine can call
an invoke activity, which includes business rule services as a
web service, the core business process mechanism cannot be
directly coupled to the business rule mechanism.

When urgent changes are needed in a running BPEL process,
the BPEL engine should be stopped, its definition should be
changed, and the changed process should then be restarted.
This sequence of actions is necessary because dynamic
adaptability related to the change is not supported in the current
implementation of the BPEL engine. However, if urgent
changes are related to business rules or logics and they are

ETRI Journal, Volume 29, Number 4, August 2007 Chankyu Park et al. 479

already separated from the core business process, a core
running BPEL process does not have to be stopped.

Occasionally, BPEL process definition can be opened for the
sharing of process definitions or communication between other
web-service providers. However, in terms of security, an
enterprise will generally avoid revealing its business policies,
as they are considered confidential. However, if business
policies are not separated in the core process and they are
coupled to the business process itself, private and confidential
content may be revealed in the public domain.

IV. Our Approach

In order to adapt changes of business rules dynamically in
runtime, we present a rule-based AOP approach that describes
a method to define business rules that can adapt to changes in
the business process as a factor of aspects in the AOP paradigm.
We also present a way to integrate a BRE with the BPEL
process. The following items comprise the contributions of the
proposed framework.

First, in order to fully use the functionalities of business rules,
we use a typical BRE. To do so, integration with a BPEL
engine should be accomplished. We will describe how the tasks
comprising integration are carried out. Business rule aspects
contained in business processes can be separated and executed
by using a BRE instead of existing programming-language-
based AOP technologies or a BPEL engine itself. Furthermore,
this separation increases adaptability, because the core process
of each separate unit can evolve independently, thus reducing
the complexity of the entire business process. When business
policies or environments change, users only have to modify the
corresponding modules that implement the affected business
rules.

Second, in order to represent business rules, we use a basic
syntax of business rules such as an if-then statement instead of
BPEL standard syntax. An if-then rule statement is more
intuitive and easy to read than BPEL standard syntax or other
programming languages. In this paper, we use a specific term,
process rule aspect (PRA), as a separate business rule aspect.
This term is employed because the scope of the BPEL process
definition is related to the composition of web services and
business rules are mainly confined to a business process.

Third, in order to satisfy AOP concepts, we propose an
RJPM capable of supporting AOP concepts without using
existing AOP technologies. Also, we present a method to
implement an extension of a BPEL execution engine to
integrate a BRE in terms of dynamic weaving and aspect
awareness to achieve an RJPM. The extended BPEL engine
can retrieve the needed information from the BRE and connect
business rules to core process events.

In the remainder of this section, we describe our rule-based
AOP in detail. Also, several examples of PRAs, a case study of
implementation, and an experiment to verify the performance
of the proposed concepts are presented [12], [13].

1. Rule-Based AOP in Business Process

One of the key concepts in this paper is that a separated core
BPEL process should be executed by a BPEL process engine
and also separated PRAs should be evaluated by a business
rules engine.

However, the main authority and location of a BRE control
belongs to the BPEL execution engine [8]. Figure 1(a) shows a
TravelPackageProcess mixed with a business rule and Fig. 1(b)
shows a separated process, that is, a core business process and
PRA, which plays the role of a business rule.

Commonly, a PRA is used within the business process, such
as “if no flight is found for the dates given in the client request,
do not search for accommodation” [8]. This rule statement is
written in natural language and does not serve as an executable
rule which can be managed in a BRE. Figure 1(a), shows that
three web services are involved in the PRA: the airline web
service, the hotel web service, and the composition itself.
Whenever business policies change, the process (a) should be
modified. However, in case (b), only a separate PRA has to be
modified or new ones are added. This enables the BPEL
process to adapt to a change without stopping the runtime

Fig. 1. Concept of separating business rules from an existing
business process: TravelPackage.

Web service call
Web service return

Activity
Container

Client input
Client output

Legend

Business
process engine

Business
rule engine Location of execution

Receive

Reply

Input

Output

Sequence

Sequence

Empty
Proceed

IF no flight found, do not search hotel

True

False

True

False

Sequence

Output

Receive

(b) Separated core process

(a) Original process

(c) Separated rule aspects

Input

Invokee
(findFlights)

Proceed

Invoke
(findHotels)

Empty

Sequence
Invoke

(findFlights)

Invoke
(findHotels)

Reply

Business
process
engine

Business
rule

engine

Control flow

480 Chankyu Park et al. ETRI Journal, Volume 29, Number 4, August 2007

business process.
Although a <switch> activity which branches to the hotel

activity can be added in order to represent the PRA, the
implementation of PRAs becomes more difficult if the
condition statement of the rule requires some logical inference.

In our rule-based AOP framework (RBAOP), the interaction
of an aspect with the core BPEL process is defined by the
RJPM. Although we use terms and basic concepts of the RJPM
suggested in [14], we newly define a unique RJPM which
interacts with a BPEL process. An RJPM has at least three
points of similarity with the general AOP concept. First, they
are similar regarding the points at which the aspect can apply,
often called join points in AOP. The join points in this RJPM
are well-defined points along the execution of a business
process. They can include basic activities, such as invoke, reply,
assign, and so on. Second, they use similar entities to specify
multiple join points. These are often called pointcuts in AOP. In
this RJPM, pointcuts are a query over all the join points of a
business process to select a small subset of join points.
Pointcuts are represented using XPath expressions [15] and
implemented using a Mandarax rule query mechanism [16].
Third they use similar means to affect behavior at the join
points. In AOP, this is often called advice. In our RBAOP,
advice depends on connecting PRAs to core application events
which depend on run-time properties. Moreover, advice
enables a BRE to retrieve needed information and make it
available in those events that take place when the rules are
applied.

Figure 2 describes the basic architecture of RBAOP,
including the RJPM outlined above. First, the BPEL engine
sends a query to the BRE when a certain event occurs. The
inference result of a BRE is then returned to the action enabler
of the BPEL engine. Finally, the action enabler identifies a type
of action and executes the action and/or advice.

Fig. 2. Basic architecture of rule-based AOP.

Control flow
Storage Component

Specification
Reference

Legend

Weaver

Aspects
(rules, facts)

Queries

BPEL
Model/Instance

Action

BPEL
Core concern

BPEL4WS

Repository

Business

rule
engine

BPEL
executer

In the following sections, we explain how PRAs in BPEL
can be represented as business rules used by a BRE, how
PRAs abide by AOP concepts, and, finally, how the rule-based
AOP mechanism can be realized by integrating a Mandarax
rule engine with a Bexee BPEL execution engine [13].

2. Representing PRAs to Mandarax Rules

To satisfy basic AOP characteristics, when a BPEL engine
executes a specific action caused by PRAs, the BPEL engine
must be aware of an event in which pointcuts are triggered.
However, a Mandarax system does not support the sort of
event condition action (ECA) mechanism [11], [12] that is used
in event-based rule execution. An ECA requires a forward-
chaining rule-based system, whereas Mandarax is a backward-
chaining engine [16].

We propose that it is possible to implement an intrinsic
event-action mechanism making an ActionP predicate, which
has a mediator role interconnecting actual BPEL activities to
the action in the Mandarax rule without modifying the
Mandarax system itself. Figure 3 describes the concept of
RJPM in detail.

As shown in Fig. 3, a PRA is composed of two prerequisites
and one conclusion. The left side of the two prerequisites
stands for actual PRAs in BPEL. This part can also include
multiple prerequisites to cover complex business policies. The
right side of the two prerequisites stands for how Mandarax
recognizes a join point in BPEL and a basic part of RJPM. If
both prerequisites must be true, actual PRAs are applied to the
join point in BPEL. The conclusion predicate ActionP
associates three terms: joinPoint, pointcut, and action. The
purpose of this predicate is to execute actions in order, either
before or after a pointCut is indicated at a joinPoint in the
BPEL process. A query represents a predicate that must exist in
rule prerequisites [16]. When the BPEL engine traverses each
BPEL activity, it can query whether an action can be executed
by substituting a joinPoint for the location information of an
actual BPEL activity.

One instance of an RJPM is a PRA, and all constituents of a

Fig. 3. Structure of the RJPM as Mandarax rules.

Business rule conditions and equal(joinPoint, constant value of joinPoint)IF

ActionP(joinPoint, constant value of pointCut, constant value of action) THEN

Join point in BPEL Actual business rules in BPEL

Query ActionP(constant value of joinPoint, pointCut, action)

Action predicate for matching proper action at events allocated to Join points

At a certain event, Mandarax query has a role such as a pointcut

ETRI Journal, Volume 29, Number 4, August 2007 Chankyu Park et al. 481

Fig. 4. Revisiting the example given in Fig. 1

Java Reflection API

Predicate/Function(Jfunction)

BPEL API

Mapping
(repository)

Binding

Execution

1 <process name = "TravelPackage" …/>
2 <sequence>
3 <receive partner="client" operation="getTravelPackage"
4 variable ="request" createInstance="yes" …/>
 …
5 <sequence>
6 <invoke partner="airline" operation=“findFlights"
7 outputVariable="flightout"/>
8 <invoke partner="hotel" operation=“findHotels" …/>
9 </sequence>
10 <assign>…</assign>
11 <reply partner="client" operation="getTravelPackage"
12 variable="proposition" …/>
13 </sequence>
14 </process>

BPEL

PRA

Sequence

Sequence

Output

Receive

Input

True False

(b) Core BPEL representation (a) Core process

(d) PRA representation as Mandarax rules

(c) Separated rule aspects

IF no flight found, do not search hotel
joinPoint:
findHotels IF equal(getVariableProperty(flightOut), “null”)

and equal(jointPoint, “Process/Invoke/findHotels”)
THEN ActionP(jointPoint, pointCut, “empty”)

Query ActionP(“Process/invoke/findHotels”, “before”, action)

Reply

Invoke
(findHotels)

Invoke
(findFlights)

Empty
Proceed

PRA should satisfy the syntax and structure of the RJPM. A
PRA is managed separately by a BRE. It plays the role of a
knowledge base for the Mandarax rule engine, and can be
represented by Mandarax rule language.

Figure 4 shows that the PRA introduced in Fig. 2 can be
converted into an example of a PRA. The joinPoint is
expressed using an XPath expression for querying the pointCut,
and getVariableProperty(flightOut) is a BPEL API function
which retrieves the values of BPEL variables and makes them
available to those events that take place when the PRAs are
applied [1], [13].

The proprietary BPEL API can be used by wrapping it with a
JFunction, which enables a Java function to execute in a PRA
because the Mandarax system has a mechanism of execution
using a Java reflection API. For instance, if the evaluation result
of this example PRA is true, an invoke activity called findHotels
is not executed and the process is ended.

3. Other Examples

In this section, we introduce two other examples to support
the rule-based AOP framework. There are typically four kinds
of business rules [9]. However, we focus on the three kinds of
business rules most closely related to dynamic behavior.

The basic rule of a rule-based AOP is an action enabler rule
which checks conditions and, upon finding them true, initiates
the appropriate action. The rule explained in the previous
section is a good example of an action enabler. Also, two
examples introduced in this section contain many action
enabler rules. The following sub-section explains how a
computation rule and an inference rule are applied to PRAs in
the BPEL process.

A. Example of a Computation Rule

In the process shown in Fig. 5, more action enabler rules are
used than in that shown in Fig. 4. Additionally, a computation
rule which checks a condition and, when the result is true,
provides an algorithm to calculate the value of a term, is used
in the process in Fig. 5. This example shows that PRAs enable
various business constraints to be separated.

In comparison with the example in Fig. 4, R1, R2, R4, Query1,
and Query4 are added to complement business policies: whether
a customer is valid, whether flights are available, whether hotels
are available, and, finally, computation of the returned prices.
These PRAs can be evaluated through a BPEL engine which
issues a query to a Mandarax inference engine when a BPEL
activity which has arrived at the joinPoint is assigned to a Query.
If the result of the inference is false at each query, this process

482 Chankyu Park et al. ETRI Journal, Volume 29, Number 4, August 2007

Fig. 5. Example of a computation rule.

Receive
(requestBooking)

Process: TravelPackage Web Service Input

Output

sequence

Web service call

Web service return
Control flow Activity

Container

Input

Output
Client Input

Client output

Legend

empty

proceed
True

False

empty
proceed

True False

empty

proceed
False

Calculateprice

Invoke
(findFlights)

Invoke
(findHotels)

Output

Input
sequence

validateCustomer

flightResults

hotelResults

flightResults

hotelResults

Calculateprice

(b) Separated core process

empty proceed

True False

empty proceed

True False

empty proceed

TrueFalse

joinPoint:
requestBooking

joinPoint:
findFlights

joinPoint:
findHotels

joinPoint:
responseBooking

action: calculate

(a) Original process

(c) Separated rule aspects

validateCustomer

Join Point

Invoke
(rentCars)

Invoke
(findTours)

Reply
(responseBooking)

Invoke
(findFlights)

Invoke
(findHotels)

True

Invoke
(rentCars)

Invoke
(findTours)

Reply
(responseBooking)

Receive
(requestBooking)

stops all subsequent processes and sends a failure result to the
client program.

As shown in Figs. 5 and 6, “empty” and “proceed” activities
can each occur three times in the original process. We can
consider empty or proceed activities as a kind of security check
service which plays the role of a typical cross-cutting concern.
Typical AOP technologies define the security check aspect and
the three join points separately, whereas the present RBAOP
approach does not separately define aspects and join points. A
PRA structure includes both aspects and join points.

B. Example of an Inference Rule

The example in Fig. 7 appears very complex and contains all
three kinds of business rules as well as a fact. The most

important among them are inference rules, which test
conditions and, upon finding them true, establish a new fact. In
a Mandarax system, a collection of these rules, facts, and
queries is called a knowledge base. This knowledge base, as a
PRA, shows that discount policies depend on a customer’s
grade in the runtime process. The PRAs from R4 to R11 and
Fact1 are added to the existing example in Fig. 5(c) to
complement the discount policies. It is possible to express
action enabler rules in the current BPEL process definition;
however, additional inference rules cannot be explicitly created
in the definition because these rules are needed to induce new
facts. Thus, these implicit inference rules have to be managed
by an independent inference system.

For example, when Query3 is issued to the Mandarax engine,
chaining occurs in backward order from Query3→ R10→

ETRI Journal, Volume 29, Number 4, August 2007 Chankyu Park et al. 483

Fig. 6. Rule representation of Fig. 5(c).

R1: IF equal(validateCustomer(getVariableProperty(Request)), 1)
 and equal(jointPoint, “Process/receive/requestBooking”)
 THEN ActionP(jointPoint, pointCut, “proceed”)

R2: IF equal(getVariableProperty(flightResult), “null”)
 and equal(jointPoint, “Process/Invoke/findHotels”)
 THEN ActionP(jointPoint, pointCut, “empty”)

R3: IF equal(getVariableProperty(hotelResult), “null”)
 and equal(jointPoint, “Process/Invoke/findTours”)
 THEN ActionP(jointPoint, pointCut, “empty”)

R4: IF equal(jointPoint, “Process/receive/responseBooking”)
 THEN calculate(joinPoint, pointCut,
 calculatePrice(getVariableProperty(Response))

Query1: ActionP(“Process/receive/requestBooking”, “after”, action)

Query2: ActionP(“Process/invoke/findHotels”, “before”, action)

Query3: ActionP(“Process/flow”, “before”, action)

Query4: calulate(“Process/invoke/responseBooking”, “before”, price)

empty proceed

True False

empty proceed

TrueFalse

empty proceed

True False

joinPoint:
requestBooking

joinPoint:
findFlights

joinPoint:
findHotels

joinPoint:
responseBooking

action: calculate

(a) Separated Rule Aspects (b) PRA representation

Fig. 7. PRA example of an inference rule.

R1: IF equal(validateCustomer(getVariableProperty(Request)), 1)
 and equal(jointPoint, “Process/receive/requestBooking”)
 THEN Action(jointPoint, “after”, “proceed”)
R2: IF equal(getVariableProperty(flightResult), “null”)
 and equal(jointPoint, “Process/Invoke/findHotels”)
 THEN Action(jointPoint, “before”, “empty”)
R3: IF equal(getVariableProperty(hotelResult), “null”)
 and equal(jointPoint, “Process/Invoke/findHotels”)
 THEN Action(jointPoint, “after”, “empty”)
R4: IF transaction(getVariableProperty(customer), 2005) > 10
 THEN grade(getVariableProperty(customer), “VIP”)
R5: IF grade(getVariableProperty(customer), “VIP”)
 THEN coupon(getVariableProperty(customer), “20%”)
R6: IF TotalAmount(getVariableProperty(customer), 2005) < 100
 THEN grade(getVariableProperty(customer), “Gold”)
R7: IF grade(getVariableProperty(customer), “Gold”)
 THEN coupon(getVariableProperty(customer), “10%”)
R8: IF grade(getVariableProperty(customer), “Standard”)
 THEN coupon(getVariableProperty(customer), “0%”)
Fact1: grade(getVariableProperty(customer), “Standard”)
R9: IF coupon(getVariableProperty(customer), “20%”)
 and equal(jointPoint, “Process/receive/responseBooking”)
 THEN calcuate(joinPoint, “before”, calculatePrice(getVariableProperty

(Response), “20%”)
R10: IF coupon(getVariableProperty(customer), “10%”)
 and equal(jointPoint, “Process/receive/responseBooking”)
 THEN calcuate(joinPoint, “before”, calculatePrice(getVariableProperty

(Response), “10%”)
R11: IF coupon(getVariableProperty(customer), “0%”)
 and equal(jointPoint, “Process/receive/responseBooking”)
 THEN calcuate(joinPoint, “before”, calculatePrice(getVariableProperty

(Response), “0%”)
Query1: ActionP(“Process/receive/requestBooking”, “after”, action)
Query2: ActionP(“Process/invoke/findHotels”, “before”, action)
Query3: ActionP(“Process/invoke/findHotels”, “after”, action)
Query4: calulate(“Process/invoke/responseBooking”, “before”, price)

R7→ R6[16]. Finally, the customer receives a discount of
10% on travel packages. If discount policies change because
of a promotion program, the user can simply modify the

PRAs without modifying the whole process or stopping
operation.

4. Implementation of a Rule-Based AOP

Integrating a rule-based system into a web service
environment is a complex task because both systems have their
own paradigms [8]. However, it is reasonable to integrate both
systems using a more standardized API, or an open-source-
based API related to them, because rule-based systems play a
significant role in our rule-based AOP.

To evaluate whether our rule-based AOP framework is
feasible, we focus on an action enabler, which identifies proper
actions, and a dynamic weaver which executes advice at a
joinPoint. Because a standardized API does not contain
specifications for access to a BPEL engine, most commercial
vendors have either no interface, or a proprietary interface. This
can make connecting a BRE with a BPEL engine difficult.

However, the BPEL engine, Bexee, an open source project,
provides a better architecture than other products,
accommodating an extension of itself and interoperability to
different systems [17]. Consequently, the Bexee engine can
communicate directly with the BRE through its proprietary
software. The PRAs can access Bexee APIs in their statements
because Mandarax provides an access mechanism using Java
reflection [16]. In addition, user-defined objects and methods
that perform specific tasks or computations can be used in their
statements.

Bexee consists of four major parts: a core engine, factory,
dispatcher, and process controller. As shown in Fig. 8, the core
engine comprises all the business logic pertaining to how to

484 Chankyu Park et al. ETRI Journal, Volume 29, Number 4, August 2007

Fig. 8. ProcessController with a visitor pattern.

Dispatcher

ProcessController

ProcessControllerlmpl

bexee::model::BPELElement

bexee::model::activity::Activity

Visitor

Visitor implementation

Object structure

Receive Reply invoke

C

I

C

I

I

I I I

process a given BPEL document. This includes
BPELProcessFactory to create a BPEL process given a BPEL
document, ProcessController to process a BPEL process, and a
dispatcher to look up deployed BPEL processes and execute
instances, as well as a number of other components.

The main task of ProcessController is to receive messages
for business processes and to execute them against a business
process. Each activity has its own assigned method for
processing. Enhancing Bexee with capabilities for processing
new activities corresponds to implementing the right method
within ProcessController. The processing of activities which
contain other activities consists of iterating over the contained
activities and calling their accept() method. For the proposed
framework, it is necessary to enhance ProcessController to
support rule-based AOP concepts. Its detail implementations
are described as a form of pseudo Java code.

A. Aspect Awareness in Bexee

Every different BPEL activity of the process is treated
uniformly as an activity. This uniform manner of processing
activities allows the process model to be used by other tools,
such as the AOP paradigm [17].

Figure 9 shows the points at which custom treatments can be
called during processing. When process (Activity,
ProcessInstance) is executed at the entry point, the point can be
a joinPoint. At this point, a Mandarax query can be executed by
an inference engine. According to the inference result, the
proper action can be processed by Bexee.

Figure 10 shows a list of generateKnowledgeBase() and
illustrates how the knowledge base can be loaded to
ProcessController. Thus far, all PRAs illustrated in this paper
can be serialized into XML format, such as the XKB
Mandarax format [16]. Line 21 in Fig. 10 is an invocation of

Fig. 9. Joinpoint access in process hierarchy.

Process(Activity, ProcessInstance)

A visitor visits

Activity

Join Point

Legend

Hierarchy

Process

 Sequence Variable Partner
links

receive flow reply

receive invoke

Fig. 10. Pseudo codes loading and initializing knowledge from
XKB file.

01 private KnowledgeBasePlus generatedKnowledgeBase(String name) {
02 XKBDriver_2_1 xkbMgr = new XKBDriver_2_1();

03 String fileName = getFileNameFromProjectName(name);
04 File file = new File(fileName);
05 InputStream in;

Thread.currentThread().setContextClassLoader(getClass().getClass
Loader());

06 try {
07 in = new FileInputStream(file);
08 KnowledgeBasePlus result = xkbMgr.importKB(in);
09 in.close();
10 return result;
11 }catch (XKBException e) {
12 System.err.println("Cannot import knowledge base!");
13 e.printStackTrace();
14 }
15 return null;
16 }

 // process the Process
17 public void process(Process process, ProcessInstance instance)
18 throws Exception {

19 log.info("Processing a Process");

 // process all child elements
20
 // Knowledgebase is loaded into memory
21 knowledgeBase = generateKnowledgeBase("TravelPackage");

22
23 }

this method when ProcessController visits a root node process
in BPEL. The knowledge base of the process should be
initialized, but ProcessController can share the same
knowledge base in multiple process instances because
ProcessController has a context that can have multiple process
instances.

As shown in Fig. 11, the dynamic weaver injects the advice
presented in PRAs into the specified join-points associated
with each advice listed as pseudo codes. Line 7 assigns the
current joinPoint value as an XPath expression to match it with

ETRI Journal, Volume 29, Number 4, August 2007 Chankyu Park et al. 485

Fig. 11. Pseudo codes: dynamic weaver and action enabler.

// one of examples implementing dynamic weaving in invoke activity
01 public String process(Invoke invoke, ProcessInstance instance)
02 throws Exception {
03 log(invoke);
04 String pointCut, action;
 // initialize objects
05 ProcessContext ctx = instance.getContext();
06 BPELProcess process = instance.getProcess();
 // current position is converted to joinPoint XPathExpression
07 String jointPoint = XPathConvert(invoke);
 LogicFactorySupport lfs = new LogicFactorySupport();
08 InferenceEngine ie = new ResolutionInferenceEngine();
09 // prepareing query and then execute query. Finally execute action

// accroding to the result of inference
10 for (Iterator iter = KnowledgeBase.queries();iter.hasNext();) {
11 Query query = (Query)iter.next();
12 Fact[] fact = query.getFacts();
13 String joinPointFromQuery[] = fact[0].getPredicate().getSlotNames();
14 if(joinPointFromQuery[0].equals(joinPoint)) {
 // In case that pointcut identifier is "before"
15 if(joinPointFromQuery[1].equals("before") {
16 ResultSet result = ie.query(query, knowledgeBase, ie.ONE,

ie.TRY_NEXT);
17 while(result.next()) {
18 if(qeury.getName().equals("ActionP") {
19 Activity action = (Activity)result.getResult(Activity.class,
 "action");
20 if (action instanceof empty) return "empty";
21 elseif (action instanceof proceed) processInvoke(invoke,
 instance);
22 else
23 return "empty";
24 }
 // if query is not "ActionP" but a general fact based query
25 else {
26 String arbitary = (String)result.getResult(String.class,
 joinPointFromQuery[2]);
27 String pointCut = (String)result.getResult(String.class,
 "pointCut");
28 ctx.setVariablePart(joinPointFromQuery[2], arbitrary);
29 }
30 }
31 }
 // In case that pointcut identifier is "before"
32 elseif(joinPointFromQuery[1].equals("after") {
33 processInvoke(invoke, instance);
34 ResultSet result = ie.query(query, knowledgeBase, ie.ONE,

ie.TRY_NEXT);
35 while(result.next()) {
36 if(query.getNames().equals("ActionP") {
37 Activity action = (Activity)result.getResult(Activity.class,
 "action");
38 if(action instanceof empty) return "empty";
39 elseif (action instanceof proceed) return "proceed");
40 else
41 return "empty";
42 }
43 else {
44 String arbitrary = (String)result.getResult(String.class,
 joinPointFromQuery[2]);
45 String pointCut = (String)result.getResult(String.class,
 "pointCut");
46 ctx.setVariablePart(joinPointFromQuery[2], arbitrary);
47 }
48 }
49 }
50 }
51 }
52 return null;
53 }

the value of the query’s joinPoint, which the user defines. At
line 8, it initializes the Mandarax inference engine to prepare
query tasks.

From line 10, the matching task, with respect to whether the
query’s user-defined joinPoint is equal to the current activity
position, is shown; if the matching result is true, then a
queryingtask using the matched query starts. Finally, actual
PRAs are evaluated at the visited method’s position according
to the “before” or “after” identifier in the query.

We simplify the process of separating general cross-cutting
concerns. Some activities, such as empty and proceed only are
illustrated. Thus, we focus on how a rule-based AOP can be
implemented by integrating Mandarax with Bexee because
PRAs used to adapt an application’s behavior dynamically are
more important than the separation of general cross-cutting
concerns.

Inference rules as well as action enabler rules can be
evaluated using general predicate-based queries, as shown in
lines 25 and 45. If a query retrieved from a knowledge base
does not include a predicate of ActionP, then only general
backward chaining inference is performed. In this case, the
inference result value is transferred to the corresponding BPEL
variable.

B. Experiment Results

To test the dynamic characteristics of the proposed approach,
we consider three implementation types. The first type is
implemented by using Java instead of a BPEL engine (namely,
Bexee). A business process for this type is manually coded in
Java codes and does not use a BPEL definition. However, the
Mandarax engine is used to integrate and process PRAs. The
second type is implemented using only the Bexee engine. Its
business process naturally includes BPEL activities and
elements corresponding to PRAs as well as the core business
process. The third type is implemented using Bexee and
Mandarax in order to justify the proposed RBAOP framework.
Business processes of all types have the same logics and
semantics.

To compare these three types fairly, we adopted the travel
package process shown in Fig. 5 (an extension of the business
process shown in Fig. 4) because Bexee cannot process
PRAs and the second implementation type only uses a Bexee
engine. The travel package process shown in Fig. 5 is based
on some PRAs and Web service interactions which simulate
the business activity of an online supplier of hotels, flights,
and cars.

We simulated multiple concurrent Web service clients, each
of which invokes deployed services multiple times. Three
business process types were deployed with the Bexee BPEL

486 Chankyu Park et al. ETRI Journal, Volume 29, Number 4, August 2007

engine or Java logics to orchestrate processes, Mandarax to
provide business rule capabilities, and axis to provide the travel
package web services. They were deployed on a dual P4 Xeon
2.8 GHz 2 GB RAM server running Windows XP, Tomcat 5.5,
and Axis 2. Clients were installed on a Windows XP laptop
with P4 1.7 GHz and 2 GB RAM. We used POSDATA’s
demonstration database as a customer database for the
simulation test.

The experimental step involves two scenarios. In the first
scenario, PRAs are not changed and all invocations are
performed without any interruption. In the second scenario,
business elements or activities that serve as business rules are
changed.

To estimate the impact of our approach on dynamic
adaptability and integration performance we use two
performance metrics: net time and gross time. Net time is
related to the first scenario, as mentioned above. It is defined as
the average period from the time a client sends a request to the
time when it successfully receives a full reply from its final
activity without any interruption. It includes the xml parsing
time of the BPEL definition and web services invocation time;
we excluded extra time consumed by the application server,
Web server, database server, and network delays for effective
approximation. Gross time is related to the second scenario. It
is defined as the sum of net time and the average period, which
includes code medication time, when the programmer modifies
business process codes; re-deployment time, when the business
process is modified again; and re-start time when a new
business process instance is started. Table 1 shows the net time
results when the first scenario was applied to three
implementation types.

In the case of RBAOP, there is overhead due to XML
parsing time analyzing the BPEL and PRA definition.
Additional integration effort is needed between Bexee and
Mandarax compared to other implementation types. The first
implementation type, Java+Mandarax, has the fastest time with
respect to executing the first scenario and has less XML
parsing-time overhead, because the BPEL definition code is
hard-coded using Java. However, it lacks flexibility regarding
modification of the business process when the process’s
policies changes.

Table 2 presents the gross time results and the impact on
configuration changes of each of the three implementations
when the second scenario was applied. We assume that the
price policy of the travel package products is changed
according to the business process of Fig. 5. The R4 rule in Fig.
6 is changed with respect to rule sets or BPEL definition. In this
experiment, the calculatePrice() function is replaced by a new
calculatePriceCoupon() function as a result of a new promotion
policy in the R4 rule. Additionally, we assume the

Table 1. Net time results for the first scenario.

Time vs. type
JSP +

Mandrax
BPEL only

(Bexee)
RBAOP

(Bexee + Mandarax)
XML

Parsing time (a)
10 ms 30 ms 450 ms

Web services call (b) 10 ms 10 ms 10 ms
Net time (c)

= a + b
20 ms 40 ms 550 ms

Table 2. Gross time results for second scenario.

Time vs. type JSP + Mandrax
BPEL only

(Bexee)

RBAOP
(Bexee +

Mandarax)
Code

modification (d) 5 min 4 min 1 min

Re-deploy time
(e) 50 ms 100 ms 20 ms

Re-start time (f) 20 ms (=net time) 40 ms (=net time) 0
Gross time

= net time+d+e+f
5 min 130 ms 4 min 220 ms 1 min 130 ms

Code or spec.
change

Modify
JSP codes & rules

Modify BPEL
spec. Modify rules

Deployment
Re-deploy Java

code &Update rules
Re-deploy BPEL

engine Update rules

Code complexity 8 17 8

R4 rule is changed when the travel package is normally
running in each implementation type, as this can serve to reveal
dynamic adaptability features.

In terms of gross time, as seen in Table 2, RBAOP is faster
than other types since it modifies only PRAs, not the BPEL
definition; moreover, it does not require re-start time. From the
viewpoint of implementation architecture, the first and second
implementation types must stop the business process instance,
modify the business process definition, re-deploy the modified
process, and start a new process because neither type supports
dynamic change of business rules. However, RBAOP can
support uninterrupted process execution since only modified
PRAs are updated in the knowledge base of Mandarax. The
original business process in Bexee is suspended for a short time
while PRAs are updated. When the updating of rules is
completed, the suspended process resumes its tasks.

We used a metric suggested in [18] to analyze the control-
flow complexity (CFC) of the BPEL processes. According to
the CFC metric, only the CFC values of core business are
calculated, considering basic BPEL activities, such as, invoke,
reply, switch, flow, and so on. The CFC values of the first and
third types in Table 2 are smaller than the second type, because

ETRI Journal, Volume 29, Number 4, August 2007 Chankyu Park et al. 487

the second type includes all BPEL elements of PRAs as a
monolithic definition. The RBAOP approach enables dynamic
adaptation when business rules change by decreasing code
complexity in terms of integration performance.

V. Conclusion

In this paper, we presented an AOP framework which uses
ruled-based knowledge to employ business rules for actual
business rule aspects without using existing AOP techniques.
We demonstrated a method to integrate rule-based knowledge,
accessible through a BRE, with a process orchestration engine
compatible with BPEL. Using examples, we demonstrated
how PRAs separated through an external rule engine can be
represented and evaluated. We further demonstrated how they
can be dynamically woven and executed.

The proposed rule-based AOP approach enables business
processes to adapt to dynamic changes without stopping
runtime processes. It also enables better management by using
business rule technology with high level representation
methods. Evaluation of three frameworks, including the
proposed approach, reveals that the proposed RBAOP method
is more useful in terms of fulfilling business rule aspects than
other frameworks.

References

[1] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte,
and S. Weerawarana, “Business Process Execution Language for
Web Services BPEL, version 1.1, http://www.106.ibm.com/
developerworks/webservices/library/ws-bpel/, July 2002.

[2] Business Process Modeling Initiative, “Business Process
Modeling Language,” http://www.bpmi.org, June 2003.

[3] “Web Service Choreography Interface WSCI 1.0,”,http://www.
w3.org/TR/ wsci/, Aug. 2002.

[4] A. Charfi and M. Mezini, “Aspect Oriented Web Service
Composition with AO4BPEL,” Proc. of the European
Conference on Web Services ECOWS 2004, LNCS 3250.

[5] M.A. Cibrán and B. Verheecke, “Dynamic Business Rules for
Web Service Composition,” Proc. of the 2nd Dynamic Aspects
Workshop DAW05, March 2005.

[6] M.A. Cibrán, M. D'Hondt, and V. Jonckers, “Aspect-Oriented
Programming for Connecting Business Rules,” Proceedings BIS,
2003.

[7] AspectJ, http://eclipse.org/aspectj/
[8] A. Charfi and M. Mezini, “Hybrid Web Service Composition:

Business Processes Meet Business Rules,” 2nd International
Conference on Service Oriented Computing, New York City,
USA, Nov. 2004.

[9] The Business Rules Group, “Defining Business Rules: What Are

They Really?” http://www.businessrulesgroup.org/, July 2000.
[10] C. Date, “What, not How: The Business Rules Approach to

Application Development,” Addison-Wesley, 2000.
[11] G. Wagner, “How to Design a General Rule Markup Language,”

Invited Talk, Workshop XML Technologies for the Semantic
Web (XSW 2002), June 2002.

[12] Mandarax business rule system, http://www.mandarax.org/
[13] bexee BPEL execution engine, http://sourceforge.net/ projects/

bexee/
[14] M. D’Hondt, “Hybrid Aspects for Integrating Rule-Based

Knowledge and Object-Oriented Functionality,” Phd Thesis,
Vrije Universiteit Brussels, May 2004.

[15] XML Path Language 1.0, http://www.w3.org/TR/xpath/
[16] Jens Dietrich, “The Mandarax Manual,” http://www.mandarax.

org, Dec. 2003.
[17] RuleML, http://www.ruleml.org/
[18] Jorge Cardoso, “Complexity Analysis of BPEL Web Processes,”

www.interscience.wiley.com, Oct. 2006.

Chankyu Park received the MS degree in
electronics engineering from Kyungpook
National University in 1997, and the MS degree
in software engineering from Carnegie-Mellon
University in 2005. He joined Electronics and
Telecommunications Research Institute (ETRI)
in 1997 and has been a Senior Member of

Engineering Staff in the Intelligent Robot Research Division since
2004. His research interests are in semantic web-services, software
engineering, and computer vision.

Ho-Jin Choi received the BS degree in
computer engineering from Seoul National
University in 1982, the MSc degree in
computing software and systems design from
University of Newcastle upon Tyne in 1985,
and the PhD degree in artificial intelligence
from Imperial College of Science and

Technology in 1995. He worked for DACOM Inc. as a research
engineer from 1982 to 1989, for Imperial College as a post-doctoral
researcher from 1995 to 1996, and for Hankuk Aviation University as
a faculty member from 1997 to 2002. Since 2002, he has been in the
faculty of the School of Engineering at Information and
Communications University. His main research interests include
artificial intelligence, software engineering, and cognitive robotics.

488 Chankyu Park et al. ETRI Journal, Volume 29, Number 4, August 2007

Danhyung Lee is a professor of computer
science and engineering in the School of
Engineering at Information and Commu-
nications University (ICU). He graduated from
the Engineering College of Seoul National
University, received his Master’s degree in
Management Science from Arthur D. Little, and

received his Ph.D. degree in Information Systems from Virginia
Commonwealth University. He served as a principal researcher and
Vice-President of SERI (Systems Engineering Research Institute) from
1973 to 1998. His research interests include methods and tools for
requirements engineering, software process improvement, and
software product lines. Since 1995, he has served as a convener and
editor of ISO/IEC JTC1/SC7 WG4.

Sungwon Kang received his BA from Seoul
National University, Korea, in 1982, and he
received his MS and PhD in computer science
from the University of Iowa, USA, in 1989 and
1992, respectively. From 1993, he was a
principal researcher with Korea Telecom R & D
Group until October 2001, when he joined

Information and Communications University. Since 2003, he has been
an adjunct faculty member of Carnegie-Mellon University, USA, for
the Master of Software Engineering Program. His current research
areas include software architecture, software modeling and analysis,
software testing, and formal methods.

Hyun-Kyu Cho is a Principle Member of
Engineering Staff in the Intelligent Robot
Research Division at ETRI. He received the
PhD degree in Management Information
Systems from Hannam University in 1997 and
the MA degree in MIS from Korea University
in 1990. He has conducted R&D about

computer integrated manufacturing systems electronic commerce
systems, and intelligent e-business systems for the past 15 years.
Currently, his main research interests are URC proactive service
technology and web robot technology.

Joo-Chan Sohn received the MS degree in
management information systems from
Hankook University of Foreign Studies in 1990.
Since joining ETRI, he has been involved with
electronic commerce systems and intelligent e-
business systems. Currently, he is a Senior
Member of Engineering Staff in the Intelligent

Robot Research Division. His research interests are intelligent service
infrastructure for robots and artificial emotion systems.

