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Abstract. In this paper, we introduce the concept of a system of asymptotically quasi-
nonexpansive type mappings. Furthermore, we define a k-step iterative sequence ap-
proximating common fixed point for a system of asymptotically quasi-nonexpansive type
mappings and study its stability in real Banach spaces.

1. Introduction

Let X be an arbitrary real Banach space and C be a nonempty close and convex subset
of X. Let T : C → C be a mapping. Suppose that, for any x0 ∈ X,

(1.1) xn+1 = f(T, xn)

yields a sequence of points {xn} in C, where f denotes the iterative process involving T
and xn. Suppose that F (T ) = {x ∈ C : Tx = x} 6= ∅ and {xn} converges strongly to
x∗ ∈ F (T ). Let {yn} be a sequence in C and {εn} be a sequence in [0,∞) defined by

εn = ‖yn+1 − f(T, yn)‖.
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If limn→∞ εn = 0 implies that limn→∞ yn = x∗, then the iterative process defined by
(1.1) is said to be T -stable or stable with respect to T (see, for example, [6]-[8], [14], [15],
[17], [18] and the references therein).

We say that the iterative process {xn} defined by (1.1) is almost T -stable or almost
stable with respect to T if

P∞
n=0 εn < ∞ implies that limn→∞ yn = x∗ (see [15]). It is easy

to see that an iterative process {xn} which is T -stable is almost T -stable. The example in
[15] showed that an iterative process which is almost T -stable need not be T -stable.

Stability results for several iterative processes for some kinds of nonlinear mappings
have been shown in recent papers by many authors (see, for example, [1], [2], [6]-[8], [14],
[15], [17], [18] and the references therein). Harder and Hicks [8] showed how such sequences
{yn} could arise in practice and demonstrated the importance of investigating the stability
of various iterative processes for various kinds of nonlinear mappings.

The concepts of quasi-nonexpansive mapping was initated by Tricomi in 1941 for real
functions. The concepts of asymptotically nonexpansive mapping and the asymptotically
nonexpansive type mapping were introduced by Goebel and Kirk [5] and Kirk [10], respec-
tively, which are closely related to the theory of fixed points in Banach spaces. Recently,
the iterative approximating problem of fixed points for asymptotically nonexpansive map-
pings or asymptotically quasi-nonexpansive mappings has been studied by many authors
(see, for example, [3], [4], [9], [11]-[13], [16], [19]-[22] and the references therein).

In this paper, we introduce the concept of a system of asymptotically quasi-
nonexpansive type mappings. Furthermore, we define a k-step iterative sequence ap-
proximating common fixed point for a system of asymptotically quasi-nonexpansive type
mappings and study its stability in real Banach spaces. Our results extend, improve and
unify the corresponding results of [3], [4], [9], [11]-[13], [16] and [19]-[22].

2. Preliminaries

Definition 2.1. Let X be a real Banach space and C be a nonempty close and convex
subset of X. Let T : C → C be a mapping. Denote by F (T ) the set of fixed points of T ,
that is, F (T ) = {x ∈ C : Fx = x}.

(1) T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C;

(2) T is said to be quasi-nonexpansive if, F (T ) 6= ∅ and

‖Tx− x∗‖ ≤ ‖x− x∗‖, ∀x ∈ C, x∗ ∈ F (T );

(3) T is said to be asymptotically nonexpansive [5] if there exists a sequence {kn} ⊂
[1,∞) with limn→∞ kn = 1 such that

‖T nx− T ny‖ ≤ kn‖x− y‖, ∀x, y ∈ C, n ≥ 0;

(4) T is said to be asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a
sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

‖T nx− x∗‖ ≤ kn‖x− x∗‖, ∀x ∈ C, x∗ ∈ F (T ), n ≥ 0;
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(5) T is said to be asymptotically nonexpansive type [10] if

lim sup
n→∞

sup
x∈C

{‖T nx− T ny‖ − ‖x− y‖} ≤ 0, ∀y ∈ C;

(6) T is said to be asymptotically quasi-nonexpansive type if F (T ) 6= ∅ and

lim sup
n→∞

sup
x∈C

{‖T nx− x∗‖ − ‖x− x∗‖} ≤ 0, ∀x∗ ∈ F (T ).

Remark 2.1. It is easy to see that the following relations hold:

(1)
F (T ) 6=∅
=⇒ (2)

⇓ ⇓
(3)

F (T ) 6=∅
=⇒ (4)

⇓ ⇓
(5)

F (T ) 6=∅
=⇒ (6).

Throughout this paper, let X be a real Banach space, C a nonempty close and convex
subset of X. Let T1, T2, · · · , Tk : C → C be mappings, F (Ti) the set of fixed points of Ti,
where k is a given positive integer. Let m and n be the nonnegative integers.

Definition 2.2. Let X be a real Banach space, C a nonempty close and convex subset
of X. T1, T2, · · · , Tk : C → C are said to be a system asymptotically quasi-nonexpansive
type mappings if S = ∩k

i=1F (Ti) 6= ∅ and, for each i ∈ {1, 2, · · · , k},

lim sup
n→∞

sup
x∈C

{‖T n
i x− x∗‖ − ‖x− x∗‖} ≤ 0, ∀x∗ ∈ S.

Remark 2.2. It is easy to see that the concept of a system asymptotically quasi-
nonexpansive type mappings defined by Definition 2.2 reduces to that of asymptotically
quasi-nonexpansive type mappings defined by Definition 2.1 (6) when T1 = T2 = · · · = Tk.

In our main results, we need the following lemma.

Lemma 2.1 ([21]). Let {an} and {bn} be two nonnegative sequences satisfying

an+1 ≤ an + bn, ∀n ≥ n0,

where
P∞

n=0 bn < ∞ and n0 is some positive integer. Then the limn→∞ an exists.

3. The main results

Theorem 3.1. Let X be a real Banach space and C be a nonempty close and convex
subset of X. Let T1, T2, · · · , Tk : C → C be a system of asymptotically quasi-nonexpansive
type mappings defined by Definition 2.2. Assume that, for each i ∈ {1, 2, · · · , k}, there
exist constants Li and α′i > 0 such that

(3.1) ‖Tix− y∗‖ ≤ Li‖x− y∗‖α′i , ∀x ∈ C, y∗ ∈ S = ∩k
i=1F (Ti).
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For any given x0 ∈ C, Define the k-step iterative sequence {xn} by
8
>>>><
>>>>:

zk−1,n = (1− αk,n)xn + αk,nT n
k xn, n ≥ 0,

zk−2,n = (1− αk−1,n)xn + αk−1,nT n
k−1zk−1,n, n ≥ 0,

· · · · · · · · ·
z1,n = (1− α2,n)xn + α2,nT n

2 z2,n, n ≥ 0,
xn+1 = (1− α1,n)xn + α1,nT n

1 z1,n, n ≥ 0,

(3.2)

where {αi,n} is a sequence in [0, 1] satisfying
P∞

n=0 α1,n < ∞ for each i ∈ {1, 2, · · · , k}.
Suppose that {yn} is a sequence in C and define a sequence {εn} of positive real numbers
by

8
>>>><
>>>>:

wk−1,n = (1− αk,n)yn + αk,nT n
k yn, n ≥ 0,

wk−2,n = (1− αk−1,n)yn + αk−1,nT n
k−1wk−1,n, n ≥ 0,

· · · · · · · · ·
w1,n = (1− α2,n)yn + α2,nT n

2 w2,n, n ≥ 0,
εn = ‖yn+1 − (1− α1,n)yn − α1,nT n

1 w1,n‖, n ≥ 0.

(3.3)

Then we have the following:

(i) lim infn→∞ d(xn, S) = 0 if and only if {xn} converges strongly to a common fixed
point x∗ of T1, T2, · · · , Tk in C, where S = ∩k

i=1F (Ti) and d(xn, S) denotes the
distance from xn to the set S, i.e., d(xn, S) = infy∗∈S ‖xn − y∗‖.

(ii)
P∞

n=0 εn < ∞ and lim infn→∞ d(yn, S) = 0 imply that {yn} converges strongly to a
common fixed point x∗ of T1, T2, · · · , Tk in C.

(iii) If {yn} converges strongly to a common fixed point x∗ of T1, T2, · · · , Tk in C, then
limn→∞ εn = 0.

In order to prove Theorem 3.1, we first give the following proposition:

Proposition 3.1. Assume that all the assumptions in Theorem 3.1 hold and
P∞

n=0 εn <
∞, then, for any given ε > 0, there exists a positive integer n0 such that

(1) ‖yn+1 − y∗‖ ≤ ‖yn − y∗‖ + εγk,n + εn, ∀y∗ ∈ S, n ≥ n0, where γk,n = α1,n +
α1,nα2,n + · · ·+ α1,nα2,n · · ·αk,n;

(2) ‖ym − y∗‖ ≤ ‖yn − y∗‖+ ε
Pm−1

j=n γk,j +
Pm−1

j=n εj , ∀y∗ ∈ S, n ≥ n0, m > n;

(3) limn→∞ d(yn, S) exists.

Proof. Take any y∗ ∈ S, it follows from (3.3) that

‖yn+1 − y∗‖(3.4)

≤ εn + ‖(1− α1,n)(yn − y∗) + α1,n(T n
1 w1,n − y∗)‖

≤ (1− α1,n)‖yn − y∗‖+ α1,n(‖T n
1 w1,n − y∗‖ − ‖w1,n − y∗‖)

+α1,n‖w1,n − y∗‖+ εn

and

‖w1,n − y∗‖
= ‖(1− α2,n)(yn − y∗) + α2,n(T n

2 w2,n − y∗)‖
≤ (1− α2,n)‖yn − y∗‖+ α2,n(‖T n

2 w2,n − y∗‖ − ‖w2,n − y∗‖) + α2,n‖w2,n − y∗‖.
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Continuing in this way, we can deduce that

‖wi,n − y∗‖(3.5)

= ‖(1− αi+1,n)(yn − y∗) + αi+1,n(T n
i+1wi+1,n − y∗)‖

≤ (1− αi+1,n)‖yn − y∗‖+ αi+1,n(‖T n
i+1wi+1,n − y∗‖ − ‖wi+1,n − y∗‖)

+ αi+1,n‖wi+1,n − y∗‖, 1 ≤ i ≤ k − 2,

and

‖wk−1,n − y∗‖(3.6)

= ‖(1− αk,n)(yn − y∗) + αk,n(T n
k yn − y∗)‖

≤ (1− αk,n)‖yn − y∗‖+ αk,n(‖T n
k yn − y∗‖ − ‖yn − y∗‖) + αk,n‖yn − y∗‖.

Since T1, T2, · · · , Tk : C → C are a system of asymptotically quasi-nonexpansive type
mappings, from definition Definition 2.2, we obtain, for each i ∈ {1, 2, · · · , k},

lim sup
n→∞

sup
x∈C

{‖T n
i x− y∗‖ − ‖x− y∗‖} ≤ 0,

which implies that, for any given ε > 0, there exists a positive integer ni,0 such that

sup
x∈C

{‖T n
i x− y∗‖ − ‖x− y∗‖} < ε, ∀n ≥ ni,0.

Set n0 = max1≤i≤k{ni,0}. Then it follows that, for any i ∈ {1, 2, · · · , k},
(3.7) sup

x∈C
{‖T n

i x− y∗‖ − ‖x− y∗‖} < ε, ∀n ≥ n0.

Since {wi,n} ⊂ C, it follows from (3.7) that

(3.8) ‖T n
i wi,n − y∗‖ − ‖wi,n − y∗‖ < ε

for all n ≥ n0 and i ∈ {1, 2, · · · , k − 1}. Again, since {yn} ⊂ C, (3.7) implies that

(3.9) ‖T n
k yn − y∗‖ − ‖yn − y∗‖ < ε, ∀n ≥ n0.

Substituting (3.5), (3.6), (3.8) and (3.9) into (3.4), for any y∗ ∈ S and n ≥ n0, we have

(3.10) ‖yn+1 − y∗‖ ≤ ‖yn − y∗‖+ εn + ε{α1,n + α1,nα2,n + · · ·+ α1,nα2,n · · ·αk,n}.
Set γk,n = α1,n + α1,nα2,n + · · ·+ α1,nα2,n · · ·αk,n. It follows from (3.10) that

‖yn+1 − y∗‖ ≤ ‖yn − y∗‖+ εγk,n + εn, ∀y∗ ∈ S, n ≥ n0.

Hence the conclusion (1) holds. From the conclusion (1), we have

‖ym − y∗‖ ≤ ‖ym−1 − y∗‖+ εγk,m−1 + εm−1

≤ ‖ym−2 − y∗‖+ εγk,m−2 + εγk,m−1 + εm−2 + εm−1

≤ · · ·

≤ ‖yn − y∗‖+ ε

m−1X
j=n

γk,j +

m−1X
j=n

εj , ∀y∗ ∈ S, m > n, n ≥ n0.
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Thus the conclusion (2) holds. Again, it follows from the conclusion (1) that

d(yn+1, S) ≤ d(yn, S) + εγk,n + εn, ∀n ≥ n0.

Since ∞X
n=0

α1,n < ∞,

∞X
n=0

εn < ∞,

we have ∞X
n=0

(εγk,n + εn) ≤ kε

∞X
n=0

α1,n +

∞X
n=0

εn < ∞.

Therefore, Lemma 2.1 implies that the conclusion (3) holds. This completes the proof.�
The proof of Theorem 3.1. It is easy to see that the sufficiency of the conclusion (i) is
obvious and the necessity follows from the conclusion (ii) by setting εn = 0 in (3.3) for
n ≥ 0 and considering (3.2).

Now, we prove the conclusion (ii) holds. It follows from Proposition 3.1 (3) that
limn→∞ d(yn, S) exists. Since lim infn→∞ d(yn, S) = 0, we have

(3.11) lim
n→∞

d(yn, S) = 0.

First, we prove that {yn} is a Cauchy sequence in C. In fact, from (3.11), the as-
sumptions

P∞
n=0 α1,n < ∞ and

P∞
n=0 εn < ∞ imply that, for any given ε > 0, there exists

a positive integer n1 ≥ n0 (where n0 is the positive integer appeared in Proposition 3.1)
such that

(3.12) d(yn, S) < ε, ∀n ≥ n1,

(3.13)

∞X
n=n1

γk,n ≤ k

∞X
n=n1

α1,n < ε

and

(3.14)

∞X
n=n1

εn < ε,

where γk,n is the same as in Proposition 3.1. By the definition of infimum, it follows from
(3.12) that, for any given n ≥ n1, there exists y∗(n) ∈ S such that

(3.15) ‖yn − y∗(n)‖ < 2ε.

On the other hand, for any m, n ≥ n1 and m > n, it follows from Proposition 3.1 (2)
that

‖ym − yn‖ ≤ ‖ym − y∗(n)‖+ ‖yn − y∗(n)‖(3.16)

≤ 2‖yn − y∗(n)‖+ ε

m−1X
j=n

γk,j +

m−1X
j=n

εj .

From (3.13)-(3.16), for any m, n ≥ n1 and m > n, we have

‖ym − yn‖ ≤ 4ε + ε2 + ε = ε(5 + ε),
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which implies that {yn} is a Cauchy sequence in C. Since X is complete and C is closed,
C is complete. Then there exists x∗ ∈ C such that yn → x∗ as n →∞.

Now, we prove that x∗ is a common fixed point of T1, T2, · · · , Tk in C. Since yn → x∗

and d(yn, S) → 0 as n → ∞, then, for any given ε > 0, there exists a positive integer
n2 ≥ n1 ≥ n0 such that

(3.17) ‖yn − x∗‖ < ε, d(yn, S) < ε, ∀n ≥ n2.

The second inequality in (3.17) implies that there exists y∗1 ∈ S such that

(3.18) ‖yn2 − y∗1‖ < 2ε.

Moreover, it follows from (3.7) that, for any i ∈ {1, 2, · · · , k},
(3.19) ‖T n

i x∗ − y∗1‖ − ‖x∗ − y∗1‖ < ε, ∀n ≥ n2.

Thus, from (3.17)-(3.19), for any i ∈ {1, 2, · · · , k} and n ≥ n2, we have

‖T n
i x∗ − x∗‖ ≤ {‖T n

i x∗ − y∗1‖ − ‖x∗ − y∗1‖}+ 2‖x∗ − y∗1‖
≤ ε + 2{‖x∗ − yn2‖+ ‖y∗1 − yn2‖}
≤ ε + 2(ε + 2ε) = 7ε,

which implies that T n
i x∗ → x∗ as n →∞. Again, since

‖T n
i x∗ − Tix

∗‖ ≤ {‖T n
i x∗ − y∗1‖ − ‖x∗ − y∗1‖}+ ‖x∗ − y∗1‖+ ‖Tix

∗ − y∗1‖
for all 1 ≤ i ≤ k and n ≥ n2, (3.1) and (3.17)-(3.19) imply

‖T n
i x∗ − Tix

∗‖
≤ ε + ‖x∗ − y∗1‖+ Li‖x∗ − y∗1‖α′i

≤ ε + ‖x∗ − yn2‖+ ‖y∗1 − yn2‖+ Li{‖x∗ − yn2‖+ ‖y∗1 − yn2‖}α′i

< ε + 3ε + Li(3ε)α′i ,

which shows that T n
i x∗ → Tix

∗ as n → ∞. By the uniqueness of the limit, we have
Tix

∗ = x∗, that is, x∗ is a fixed point of T1, T2, · · · , Tk in C. Therefore, the conclusion (ii)
holds.

From (3.4)-(3.6), (3.8) and (3.9), we have, for any given ε > 0,

εn ≤ ‖yn+1 − x∗‖+ ‖(1− α1,n)(yn − x∗) + α1,n(T n
1 w1,n − x∗)‖

≤ ‖yn+1 − x∗‖+ (1− α1,n)‖yn − x∗‖+ α1,n(‖T n
1 w1,n − x∗‖ − ‖w1,n − x∗‖)

+ α1,n‖w1,n − x∗‖
≤ · · ·
≤ ‖yn+1 − x∗‖+ ‖yn − x∗‖+ ε{α1,n + α1,nα2,n + · · ·+ α1,nα2,n · · ·αk,n}
= ‖yn+1 − x∗‖+ ‖yn − x∗‖+ εγk,n, ∀n ≥ n0.

Since yn → x∗ and
P∞

n=0 γk,n ≤ k
P∞

n=0 α1,n < ∞, it follows that limn→∞ εn = 0. Thus
the conclusion (iii) holds. This completes the proof. �

If take T1 = T2 = · · · = Tk in Theorem 3.1, then we obtain the following conclusion:
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Theorem 3.2. Let X be a real Banach space and C be a nonempty close and convex
subset of X. Let T : C → C be an asymptotically quasi-nonexpansive type mapping defined
by Definition 2.1 (6). Assume that there exist constants L and α′ > 0 such that

‖Tx− y∗‖ ≤ L‖x− y∗‖α′ , ∀x ∈ C, y∗ ∈ F (T ).

For any given x0 ∈ C, define the k-step iterative sequence {xn} by

8
>>>><
>>>>:

zk−1,n = (1− αk,n)xn + αk,nT nxn, n ≥ 0,
zk−2,n = (1− αk−1,n)xn + αk−1,nT nzk−1,n, n ≥ 0,
· · · · · · · · ·
z1,n = (1− α2,n)xn + α2,nT nz2,n, n ≥ 0,
xn+1 = (1− α1,n)xn + α1,nT nz1,n, n ≥ 0,

where {αi,n} is sequence in [0, 1] satisfying
P∞

n=0 α1,n < ∞ for each i ∈ {1, 2, · · · , k}.
Suppose that {yn} is a sequence in C and define a sequence {εn} of positive real numbers
by

8
>>>><
>>>>:

wk−1,n = (1− αk,n)yn + αk,nT nyn, n ≥ 0,
wk−2,n = (1− αk−1,n)yn + αk−1,nT nwk−1,n, n ≥ 0,
· · · · · · · · ·
w1,n = (1− α2,n)yn + α2,nT nw2,n, n ≥ 0,
εn = ‖yn+1 − (1− α1,n)yn − α1,nT nw1,n‖, n ≥ 0.

Then we have the following:

(i) lim infn→∞ d(xn, F (T )) = 0 if and only if {xn} converges strongly to a fixed point
x∗ of T in C, where d(xn, F (T )) denotes the distance from xn to the set F (T ), i.e.,
d(xn, F (T )) = infy∗∈F (T ) ‖xn − y∗‖.

(ii)
P∞

n=0 εn < ∞ and lim infn→∞ d(yn, F (T )) = 0 imply that {yn} converges strongly
to a fixed point x∗ of T in C.

(iii) If {yn} converges strongly to a fixed point x∗ of T in C, then limn→∞ εn = 0.

Remark 3.1. Theorems 3.1 and 3.2 extend, improve and unify the corresponding results
of [3], [4], [9], [11]-[13], [16] and [19]-[22].
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