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Meromorphic Functions with Weighted Sharing of One Set
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Abstract. In this article, we investigate the problem of uniqueness of meromorphic
functions sharing one set and having deficient values, and obtain a result which improves
some earlier results.

1. Introduction and definitions

Let f be a meromorphic function defined on the complex plane C, and let S be a
subset of C = C

S{∞}. Define

E(S, f) =
[
a∈S

{z : f(z)− a = 0, counting multiplicity},

E(S, f) =
[
a∈S

{z : f(z)− a = 0, ignoring multiplicity}.

Let f and g be two nonconstant meromorphic functions. If E(S, f) = E(S, g), we say that
f and g share the set S CM (counting multiplicity ); if E(S, f) = E(S, g), we say that f
and g share the set S IM (ignoring multiplicity). Specially, if S = {a}, where a ∈ C, we
say that f and g share the value a CM (or IM), if E(S, f) = E(S, g) (or E(S, f) = E(S, g)).
It is assumed that the reader is familiar with the notations of the Nevanlinna theory that
can be found, for instance in [5] or [10]. Lahiri and Banerjee relaxed the nature of sharing
the sets with the aid of the notion of weighted sharing as introduced in [6].

Definition 1. Let k be a nonnegative integer or infinity. For any a ∈ C, we denote by
Ek(a, f) the set of all a-points of f where an a-point of multiplicity m is counted m times
if m ≤ k and k +1 times if m > k. If Ek(a, f) = Ek(a, g), we say that f, g share the value
a with weight k.

The definition implies that if f, g share a value a with weight k then z0 is a zero of
f −a with multiplicity m (≤ k) if and only if it is a zero of g−a with multiplicity m (≤ k),
and z0 is a zero of f − a with multiplicity m (> k) if and only if it is a zero of g − a with
multiplicity n (> k), where m is not necessarily equal to n.
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We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly
if f, g share (a, k), then f, g share (a, p) for all integer p, 0 ≤ p < k. Also we note that
f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

Definition 2. For S ⊂ C, we define Ef (S, k) as Ef (S, k) =
S

a∈S

Ek(a, f), where k is a

nonnegative integer or infinity. Clearly E(S, f) = Ef (S,∞) and E(S, f) = Ef (S, 0).

Definition 3. For a ∈ C, we define

Θ(a; f) = 1− lim sup
r→∞

N(r,
1

f − a
)

T (r, f)
.

In 1977, Gross [4] proved that there exist three finite sets Sj (j = 1, 2, 3), such that any
two entire functions f and g satisfying E(Sj , f) = E(Sj , g) for j = 1, 2, 3 must be identical,
and asked: Does there exist a finite set S such that, for any pair of nonconstant entire
functions f and g, E(S, f) = E(S, g) implies f ≡ g? If the answer of this question is
affirmative, what is the smallest cardinal of S?

Yi [12] first proved that such that a set exist. In fact, Yi proved the following:

Theorem A. There exists a set S with seven elements such that E(S, f) = E(S, g) implies
f ≡ g, for any pair of nonconstant entire functions f and g.

Yi [12], Li and Yang [7], [8], Frank and Rienders [3], Bartels [1] and other authors
studied the problem for meromorphic functions sharing one set. Yan [11] proved the
following result which is an improvement of the result of Fang and Hua [2].

Theorem B. Let f and g be two nonconstant meromorphic functions. If Θ(∞, g) > 3/4
and Θ(∞, f) > 3/4, then there exists a set with seven elements such that E(S, f) = E(S, g)
implies f ≡ g.

Recently, I. Lahiri and A. Banerjee [6] have weakened the condition “Θ(∞, g), Θ(∞, f) >
3/4” in Theorem B, but their set consists of nine elements, they proved the following re-
sult:

Theorem C. Let S = {z : zn +azn−1+b = 0}, where n ≥ 9 and a, b are nonzero complex
number such that zn + azn−1 + b = 0 has no repeated root. If for two nonconstant mero-
morphic functions f and g satisfy Ef (S, 2) = Eg(S, 2) and Θ(∞; f)+Θ(∞; g) > 4/(n−1),
then f ≡ g.

We note that if (n− 1)n−1 6= b(−(n/a))n and ab 6= 0, then zn + azn−1 + b = 0 has no
repeated root.

The purpose of this article, we treat the conditions in Theorems B and C. In fact, the
main idea to proving is due to Lin and Yi [9], they proved the following:

Theorem D. Let S1 = {0}, S2 = {∞} and S3 = {w ∈ C : awn − n(n− 1)w2 + 2n(n−
2)bw − (n − 1)(n − 2)b2 = 0}, where n(≥ 4) is an integer, and a and b are two nonzero
complex numbers satisfying abn−2 6= 1, 2. If f and g are two nonconstant meromorphic
functions satisfying E(Sj , f) = E(Sj , g), for j = 1, 2, 3, then f ≡ g.

A set S with finite elements is called a unique range set of meromorphic functions
provided that E(S, f) = E(S, g) can imply f ≡ g for any two meromorphic functions. Li
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and Yang [8] gave an unique range set with 15 elements, Frank and Rienders [3] showed an
unique range set with 11 elements. The questions related to unique range set have been
studied by many mathematicians. However, what is the smallest cardinality of unique
range set? It is still an open problem.

In this paper, we prove the following result which is an improvement of Theorems B
and C.

Theorem 1. Let S = {w ∈ C : awn−n(n− 1)w2 + 2n(n− 2)bw− (n− 1)(n− 2)b2 = 0},
where n(≥ 6) is an integer, and a and b are two nonzero complex numbers satisfying
abn−2 6= 1, 2. Then f ≡ g, if f and g are nonconstant meromorphic functions which
satisfy one of the following conditions:

(C-1) 16−n
6

< Θf , 16−n
6

< Θg and Ef (S, 0) = Eg(S, 0).

(C-2) 3
14

(12− n) < Θf , 3
14

(12− n) < Θg and Ef (S, 1) = Eg(S, 1).

(C-3) 10−n
4

< Θf , 10−n
4

< Θg and Ef (S, 2) = Eg(S, 2).

Here Θf = Θ(0, f) + Θ(∞, f) + Θ(b, f) and Θg can be similarly defined.

We see that the condition “ 10−n
4

< Θf , 10−n
4

< Θg” of C-3 is better than the
condition “Θ(∞; f) + Θ(∞; g) > 4/(n− 1)” in Theorem C, when n > 10. From Theorem
1, we can easy to deduce the following corollary:

Corollary. Suppose that b is a nonzero complex number and n ≥ 6 is an integer. There
exists a finite set S with n elements and b 6∈ S such that if for two nonconstant meromorphic
functions f and g satisfy one of the conditions (C-1), (C-2) and (C-3) in Theorem 1, then
f ≡ g.

2. Some lemmas

Let n(≥ 6) be an integer, and let a and b be two nonzero complex numbers satisfying
abn−2 6= 1, 2. It is obvious that n(n− 1)w2 − 2n(n− 2)bw + (n− 1)(n− 2)b2 = 0 has two
distinct roots, say α1 and α2. Set

(1) R(w) =
awn

n(n− 1)(w − α1)(w − α2)
.

From (1) we have

(2) R
′
(w) =

(n− 2)awn−1(w − b)2

n(n− 1)(w − α1)2(w − α2)2
.

We see that w = 0 is one root with multiplicity n of the equation R(w) = 0; and w = b

is only one root with multiplicity 3 of the equation R(w) − c = 0, where c = abn−2

2
6= 1.

Thus,

(3) R(w)− c =
a(w − b)3Qn−3(w)

n(n− 1)(w − α1)(w − α2)
,

where Qn−3(w) is a polynomial of degree n− 3 and has no multiple root.
Set

(4) R(w)− 1 =
P (w)

n(n− 1)(w − α1)(w − α2)
,
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where

(5) P (w) = awn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2.

We observe that P (w) = 0 has only simple zeros. Let us define F and G by

(6) F = R(f), G = R(g),

and we set

(7) H =
F
′′

F ′ − 2
F
′

F − 1
− (

G
′′

G′ − 2
G
′

G− 1
)

Lemma 1. Let S be a set which is mentioned in Theorem 1 such that n ≥ 6. If Ef (S, 0) =
Eg(S, 0), then (n− 2)T (r, f) ≤ nT (r, g) + S(r, f) and (n− 2)T (r, g) ≤ nT (r, f) + S(r, g).
This shows that S(r, f) = S(r, g) and we denote them by S(r).

Proof. Let zj , j = 1, · · · , n be the zeros of P (w). From the second fundamental theorem,
we have

(n−2)T (r, f) ≤
nX

j=1

N(r,
1

f − zj
)+S(r, f) ≤

nX
j=1

N(r,
1

g − zj
)+S(r, f) ≤ nT (r, g)+S(r, f).

Similarly, we have (n− 2)T (r, g) ≤ nT (r, f) + S(r, g). This proves Lemma 1. �

Lemma 2. FG 6≡ 1, when n ≥ 6.

Proof. Suppose to the contrary that FG ≡ 1. Let z0 be a pole of f with multiplicity p.
Then z0 is a pole of F with multiplicity (n− 2)p. This leads us that z0 is a zero of g with
multiplicity q such that (n − 2)p = nq. We see that 2q = (n − 2)(p − q) ≥ n − 2, so that
p = qn/(n− 2) ≥ n/2. Therefore, N(r, f) ≤ (2/n)N(r, f). Let z0 be a zero of f − α1 with
multiplicity p. Then z0 is a zero of g with multiplicity q such that p = nq ≥ n. Therefore,
N(r, 1/(f − α1)) ≤ (1/n)N(r, 1/(f − α1)). Similarly, we obtain that

N(r, 1/(f − α2)) ≤ (1/n)N(r, 1/(f − α2)).

According to the second fundamental theorem, we get T (r, f) ≤ (4/n)T (r, f) + S(r, f),
which is impossible. This proves the lemma. �

Lemma 3 [9, Lemma 1]. If F and G share (1, 0) and H 6≡ 0, then

N1)(r,
1

F − 1
,

1

G− 1
) ≤ N(r, H) + S(r),

where N1)(r,
1

F−1
, 1

G−1
) denotes the counting function of common simple 1−points of F

and G, and S(r) is defined as in Lemma 1.

Lemma 4 [9, Lemma 5]. If Q(w) = (n−1)2(wn−1)(wn−2−1)−n(n−2)(wn−1−1)2, then
Q(w) = (w− 1)4(w− β1)(w− β2) · · · (w− β2n−6), where βj \ {0, 1} (j = 1, 2, · · · , 2n− 6)
are distinct complex numbers.
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3. Proof of Theorem 1

We first assume that Ef (S, 0) = Eg(S, 0). It follows from (2), (4) and (6) that F and
G are nonconstant meromorphic functions sharing 1 IM. Suppose H 6≡ 0. From (2) and
(6) we have

(8) F
′
=

(n− 2)afn−1(f − b)2f
′

n(n− 1)(f − α1)2(f − α2)2
, G

′
=

(n− 2)agn−1(g − b)2f
′

n(n− 1)(g − α1)2(g − α2)2
.

From (7) and (8), we see that

N(r, H) ≤ N(r,
1

f
) + N(r, f) + N(r,

1

f − b
) + N∗(r,

1

F − 1
,

1

G− 1
)(9)

+ N0(r,
1

f ′
) + N(r,

1

g
) + N(r, g) + N(r,

1

g − b
) + N0(r,

1

g′
) + S(r),

where we write N0(r,
1

f ′
) for the counting function of the zeros of f

′
that are not zeros

of f(f − b) and F − 1, N0(r,
1

g′
) can be similarly defined, and N∗(r,

1

F − 1
,

1

G− 1
) is

the counting function of those 1−points of F whose multiplicities are not equal to the
multiplicities of the corresponding 1−points of G, each point in these counting functions
is counted only once.
We observe that

N(r,
1

F − 1
) + N(r,

1

G− 1
)(10)

≤ N1)(r,
1

F − 1
,

1

G− 1
) +

1

2
{N(r,

1

F − 1
) + N(r,

1

G− 1
)}+

1

2
N∗(r,

1

F − 1
,

1

G− 1
)

≤ N1)(r,
1

F − 1
,

1

G− 1
) +

n

2
{T (r, f) + T (r, g)}+

1

2
N∗(r,

1

F − 1
,

1

G− 1
) + S(r).

By using the second fundamental theorem, we have

(n + 1)T (r, f) + (n + 1)T (r, g)(11)

≤ N(r,
1

F − 1
) + N(r,

1

f
) + N(r,

1

f − b
) + N(r, f)

+ N(r,
1

G− 1
) + N(r,

1

g
) + N(r,

1

g − b
) + N(r, g)−N0(r,

1

f ′
)−N0(r,

1

g′
) + S(r).

From (9)− (11) and by applying Lemma 3, we note that

(
n

2
+ 1)T (r, f) + (

n

2
+ 1)T (r, g) ≤ 2N(r,

1

f
) + 2N(r,

1

f − b
)(12)

+ 2N(r, f) + 2N(r,
1

g
) + 2N(r,

1

g − b
) + 2N(r, g) +

3

2
N∗(r,

1

F − 1
,

1

G− 1
) + S(r).

We consider that zi (i = 1, · · · , n) are the roots of P (w). Then, by the first fundamental
theorem
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N∗(r,
1

F − 1
,

1

G− 1
)

≤ N(r,
1

F − 1
)−N(r,

1

F − 1
) + N(r,

1

G− 1
)−N(r,

1

G− 1
)

=

nX
j=1

(N(r,
1

f − zj
)−N(r,

1

f − zj
)) +

nX
j=1

(N(r,
1

g − zj
)−N(r,

1

g − zj
))

≤ N(r,
1

f
′

f

) + N(r,
1

g
′

g

) ≤ N(r,
f
′

f
) + N(r,

g
′

g
) + S(r)

≤ N(r,
1

f
) + N(r, f) + N(r,

1

g
) + N(r, g) + S(r),

N∗(r,
1

F − 1
,

1

G− 1
)

≤
nX

j=1

(N(r,
1

f − zj
)−N(r,

1

f − zj
)) +

nX
j=1

(N(r,
1

g − zj
)−N(r,

1

g − zj
))

≤ N(r,
1

f
′

f − b

) + N(r,
1

g
′

g − b

) ≤ N(r,
f
′

f − b
) + N(r,

g
′

g − b
) + S(r)

≤ N(r,
1

f − b
) + N(r, f) + N(r,

1

g − b
) + N(r, g) + S(r)

and

N∗(r,
1

F − 1
,

1

G− 1
)

≤
nX

j=1

(N(r,
1

f − zj
)−N(r,

1

f − zj
)) +

nX
j=1

(N(r,
1

g − zj
)−N(r,

1

g − zj
))

≤ N(r,
1

f
′

f(f − b)

) + N(r,
1

g
′

g(g − b)

) ≤ N(r,
f
′

f(f − b)
) + N(r,

g
′

g(g − b)
) + S(r)

≤ N(r,
1

f − b
) + N(r,

1

f
) + N(r,

1

g − b
) + N(r,

1

g
) + S(r),

from these three inequalities and (12), we get the following:

(
n

2
+ 1)T (r, f) + (

n

2
+ 1)T (r, g)(13)

≤ 7

2
N(r,

1

f
) + 2N(r,

1

f − b
) +

7

2
N(r, f) +

7

2
N(r,

1

g
) + 2N(r,

1

g − b
) +

7

2
N(r, g) + S(r),
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(
n

2
+ 1)T (r, f) + (

n

2
+ 1)T (r, g)(14)

≤ 2N(r,
1

f
) +

7

2
N(r,

1

f − b
) +

7

2
N(r, f) + 2N(r,

1

g
) +

7

2
N(r,

1

g − b
) +

7

2
N(r, g) + S(r)

and

(
n

2
+ 1)T (r, f) + (

n

2
+ 1)T (r, g)(15)

≤ 7

2
N(r,

1

f
) +

7

2
N(r,

1

f − b
) + 2N(r, f) +

7

2
N(r,

1

g
) +

7

2
N(r,

1

g − b
) + 2N(r, g) + S(r).

The inequalities (13)− (15) give us

1

3
(
n

2
+ 1)T (r, f) +

1

3
(
n

2
+ 1)T (r, g)

≤ N(r,
1

f
) + N(r,

1

f − b
) + N(r, f) + N(r,

1

g
) + N(r,

1

g − b
) + N(r, g) + S(r).

Suppose the condition (C-1) in Theorem 1 occurs. We conclude from the last inequality
that for each ε such that 0 < 3ε < min{n−16

6
+ Θf , n−16

6
+ Θg}, we have

(
n− 16

6
+ Θf − 3ε)T (r, f) + (

n− 16

6
+ Θg − 3ε)T (r, g) ≤ S(r).

Without loss of generality we may suppose that there exists a set I with infinite measure

such that T (r, g) ≤ T (r, f), r ∈ I. Then, from the last inequality, we obtain that
n− 16

3
+

Θf + Θg ≤ 6ε, which is a contradiction.
Suppose the condition (C-2) in Theorem 1 occurs. Then F and G share (1, 1); moreover

N∗(,
1

F − 1
,

1

G− 1
)(16)

≤ 1

2
{N(r,

f
′

f
) + N(r,

g
′

g
)}+ S(r)

≤ 1

2
{N(r, f) + N(r,

1

f
) + N(r, g) + N(r,

1

g
)}+ S(r),

N∗(,
1

F − 1
,

1

G− 1
)(17)

≤ 1

2
{N(r,

f
′

f − b
) + N(r,

g
′

g − b
)}+ S(r)

≤ 1

2
{N(r, f) + N(r,

1

f − b
) + N(r, g) + N(r,

1

g − b
)}+ S(r),

N∗(,
1

F − 1
,

1

G− 1
)(18)

≤ 1

2
{N(r,

f
′

f(f − b)
) + N(r,

g
′

g(g − b)
)}+ S(r)

≤ 1

2
{N(r,

1

f
) + N(r,

1

f − b
) + N(r,

1

g
) + N(r,

1

g − b
)}+ S(r)
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and

N(r,
1

F − 1
) + N(r,

1

G− 1
)−N1)(r,

1

F − 1
)(19)

≤ 1

2
{N(r,

1

F − 1
) + N(r,

1

G− 1
)}

≤ n

2
{T (r, f) + T (r, g)}.

The inequalities (16)− (19) imply that

N∗(r,
1

F − 1
,

1

G− 1
) + N(r,

1

F − 1
) + N(r,

1

G− 1
)−N1)(r,

1

F − 1
)(20)

≤ n

2
{T (r, f) + T (r, g)}+

1

3
{N(r, f) + N(r,

1

f
) + N(r,

1

f − b
)}

+
1

3
{N(r, g) + N(r,

1

g
) + N(r,

1

g − b
)}+ S(r).

By using Lemma 3, we deduce from the inequalities (9), (11), (20) that

(
n

2
+ 1){T (r, f) + T (r, g)}(21)

≤ 7

3
{N(r, f) + N(r,

1

f
) + N(r,

1

f − b
)}+

7

3
{N(r, g) + N(r,

1

g
) + N(r,

1

g − b
)}+ S(r).

Thus, if ε is any positive real number such that 0 < 7ε < min{((n−12)/2)+(7/3)Θf , ((n−
12)/2) + (7/3)Θg} then, by (21), we obtain

(
n− 12

2
+

7

3
Θf − 7ε)T (r, f) + (

n− 12

2
+

7

3
Θg − 7ε)T (r, g) ≤ S(r).

Without loss of generality we may suppose that there exists a set I with infinite measure
such that T (r, g) ≤ T (r, f), r ∈ I. The last inequality gives us

n− 12 + (7/3)Θf + (7/3)Θg ≤ 14ε,

which is a contradiction. Suppose the condition (C-3) in Theorem 1 occurs. Then F and
G share (1, 2). We see that

N(r,
1

F − 1
) + N(r,

1

G− 1
)−N1)(r,

1

F − 1
) + N∗(r,

1

F − 1
,

1

G− 1
)(22)

≤ 1

2
{N(r,

1

F − 1
) + N(r,

1

G− 1
)} ≤ n

2
{T (r, f) + T (r, g)}.

It follows from (9), (11), (22) and by applying Lemma 3, we have

{n− 10

4
+ Θf − 3ε}T (r, f) + {n− 10

4
+ Θg − 3ε}T (r, g) ≤ S(r, f) + S(r, g).

Similar to the arguments in the cases (C-1) and (C-2), we can still get a contradiction.
Hence H ≡ 0. By integration (7), we find that

(23) G =
(B + 1)F + A−B − 1

BF + A−B
,
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where A (6= 0) and B are constants. From (23) and the assumptions of Theorem 1, we see
that F and G share 1 CM and T (r, F ) = T (r, G) + O(1). Thus,

(24) T (r, f) = T (r, g) + S(r).

Consequently, from (3) we obtain

N(r,
1

F − c
) ≤ N(r,

1

f − b
) + N(r,

1

Qn−3(f)
) + S(r)(25)

≤ (n− 2)T (r, f) + S(r, f) ≤ n− 2

n
T (r, F ) + S(r, f).

Now we distinguish three cases.

Case 1. B 6= 0, − 1. Suppose that A − B − 1 6= 0. From (23), (24) and by the second
fundamental theorem

nT (r, f) ≤ N(r, F ) + N(r,
1

F
) + N(r,

1

F +
A−B − 1

B + 1

) + S(r, f)

≤ N(r, f) + N(r,
1

f − α1
) + N(r,

1

f − α2
) + N(r,

1

f
) + N(r,

1

g
) + S(r)

≤ 5T (r, f) + S(r),

which contradicts n ≥ 6. Therefore A = B + 1, we can write (23) as

(26) G =
(B + 1)F

BF + 1
.

If c 6= − 1

B
then from (24)−(26) and by using the second fundamental theorem, we observe

2nT (r, f) ≤ N(r, F ) + N(r,
1

F
) + N(r,

1

F +
1

B

) + N(r,
1

F − c
) + S(r, F )

≤ N(r, f) + N(r,
1

f − α1
) + N(r,

1

f − α2
) + N(r,

1

f
) + N(r, g)

+ N(r,
1

g − α1
) + N(r,

1

g − α2
) + (n− 2)T (r, f) + S(r)

≤ (n + 5)T (r, f) + S(r),

which is also a contradiction to n ≥ 6. Therefore, c = − 1

B
. Then (26) implies that

F =
cG

G− (1− 0c)
. Since c 6= 1/2, then we get that c 6= 1− c, from (24), (25) and by using

the second fundamental theorem, we see that

2nT (r, g) ≤ N(r, G) + N(r,
1

G
) + N(r,

1

G− (1− c)
) + N(r,

1

G− c
) + S(r, G)

≤ N(r,
1

g − α1
) + N(r,

1

g − α2
) + N(r, g) + +N(r,

1

g
)

+ N(r,
1

f − α1
) + N(r,

1

f − α2
) + N(r, f) + (n− 2)T (r, g) + S(r)

≤ (n + 5)T (r, g),
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which contradicts n ≥ 6.

Case 2. B = −1. We write (23) as

(27) G =
A

−F + A + 1
.

By Lemma 2, we get A+1 6= 0. If A+1 6= c then from (24), (25) and by using the second
fundamental theorem, we have

2nT (r, f) ≤ N(r, F ) + N(r,
1

F − (A + 1)
) + N(r,

1

F
) + N(r,

1

F − c
) + S(r, F )

≤ N(r, f) + N(r,
1

f − α1
) + N(r,

1

f − α2
) + N(r, g)

+ N(r,
1

g − α1
) + N(r,

1

g − α2
) + N(r,

1

f
) + (n− 2)T (r, f) + S(r)

≤ (n + 5)T (r, f) + S(r),

which contradicts n ≥ 6. So that A + 1 = c; it follows from (27) that F =
cG + 1− c

G
. If

c−1
c
6= c then from (24), (25) and the second fundamental theorem, we obtain

2nT (r, g) ≤ N(r,
1

G
) + N(r, G) + N(r,

1

G− c
) + N(r,

1

G +
1− c

c

) ≤ (n + 3)T (r, g) + S(r),

which is a contradiction to n ≥ 6. Thus
c− 1

c
= c, and hence, F = c((G − c)/G). Since

Qn−3(w) has n − 3 distinct root, it follows from the last equation that (n − 4)T (r, g) ≤
N(r, 1/(G − c)) + S(r) ≤ N(r, 1/f) + S(r) ≤ T (r, f) + S(r); from this and (24), we have
a contradiction.

Case 3. B = 0. From (23), we get

(28) G =
F + A− 1

A
.

Suppose A 6= 1. If 1 − A 6= c then from (24), (25) and by using the second fundamental
theorem, we have

2nT (r, f) ≤ N(r,
1

F + A− 1
) + N(r,

1

F
) + N(r, F ) + N(r,

1

F − c
) + S(r, F )

≤ N(r,
1

g
) + N(r,

1

f
) + N(r, f) + N(r,

1

f − α1
)

+ N0(r,
1

f − α2
) + (n− 2)T (r, f) + S(r, f)

≤ (n + 3)T (r, f) + S(r, f),

which is a contradiction to n ≥ 6. Hence 1−A = c; by (28), we get F = (1−c){G− c

c− 1
}.



Meromorphic Functions with Weighted Sharing of One Set 67

If c 6= 2 then from (24), (25) and the second fundamental theorem, we obtain

2nT (r, g) ≤ N(r,
1

G
) + N(r, G) + N(r,

1

G− c
) + N(r,

1

G− c

c− 1

)

≤ N(r,
1

g
) + N(r, g) + N(r,

1

g − α1
) + N(r,

1

g − α2
)

+ (n− 2)T (r, g) + N(r,
1

f
) + S(r)

≤ (n + 3)T (r, g) + S(r, g),

which is a contradiction to n ≥ 6. So that c = 2, and hence F = 2−G. From this equation
and (24), we deduce that

(n− 4)T (r, g) ≤ N(r, 1/(G− 2)) + S(r) = N(r, 1/f) + S(r) ≤ T (r, f) + S(r),

which is also a contradiction. Hence A = 1. Then, by (28), we have F ≡ G; and from (1)
and (6) we obtain that

(29) n(n−1)f2g2(fn−2−gn−2)−2n(n−2)bfg(fn−1−gn−1)+(n−1)(n−2)b2(fn−gn) = 0.

Letting h = f/g. It follows from (29) that

n(n− 1)h2g2(hn−2 − 1)− 2n(n− 2)bhg(hn−1 − 1) + (n− 1)(n− 2)b2(hn − 1) = 0,

which implies

n2(n− 1)2h2g2(hn−2 − 1)2 − 2n2(n− 1)(n− 2)bhg(hn−1 − 1)(hn−2 − 1)(30)

= −n(n− 1)2(n− 2)b2(hn − 1)(hn−2 − 1).

By using Lemma 4 and (30), we conclude that

(31) {n(n− 1)h(hn−2 − 1)g − n(n− 2)b(hn−1 − 1)}2 = −n(n− 2)b2Q(h),

where Q(h) = (h − 1)4(h − β1)(h − β2) · · · (h − β2n−6), and βj ∈ C \ {0, 1}, (j =
1, 2, · · · , 2n− 6), which are pairwise distinct. If h is not constant then from (31), we know
that every zero of h − βj (j = 1, 2, · · · , 2n − 6) is of order at least 2. By the second
fundamental theorem, we obtain that

(2n− 8)T (r, h) ≤ N(r,
1

h− β1
) + · · ·+ N(r,

1

h− β2n−6
) + S(r, h)

≤ 1

2
N(r,

1

h− β1
) + · · ·+ 1

2
N(r,

1

h− β2n−6
) + S(r, h)

≤ (n− 3)T (r, h) + S(r, h),

that is n ≤ 5, which is a contradiction. This shows that h is a constant. It follows from
(30) that hn−2 − 1 = 0 and hn−1 − 1 = 0; that means h = 1, and hence f ≡ g. This
completes the proof of Theorem 1. �
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