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Abstract. In this paper, we consider a delay differential equation model of two compet-

ing species with harvesting of the mature and immature members of each species. The

time delay in the model represents the time from birth to maturity of that species, which

appears in the adults recruitment terms. We study the dynamics of our model analytically

and we present results on positivity and boundedness of the solution, conditions for the

existence and globally asymptotically stable of equilibria, a threshold of harvesting, and

the optimal harvesting of the mature populations of each species.

1. Introduction

Recently, investigations of mathematical models of stage-structured population
growth, where the individual members of the population have a life history that
takes them through two stages, immature and mature, with the time from birth
to maturity represented by either discrete or distributed time delay, have received
some attention. These kinds of models are appropriate for many species in the real
world, we have in mind mammalian populations and some amphibious animals.
Aiello and Freedman [1] proposed and studied the following single species model
which has become quite well known:

u′i(t) = αum(t)− γui(t)− α e−γτum(t− τ),(1.1)
u′m(t) = α e−γτum(t− τ)− βu2

m(t),

where α, β, γ and the delay τ are positive constants. In this system ui and um

denote respectively the numbers of immature and mature members of the single-
species population. The delay τ is the time taken from birth to maturity. They
considered various aspects of the above system including positivity and boundedness
of solutions. They also established that all ecologically relevant solutions tend, as
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time t →∞, to the positive equilibrium solution

(ui, um) ≡
(

α2

βγ
e−γτ (1− e−γτ ) ,

α

β
e−γτ

)
.

Note that the equilibrium depends on the delay τ . The model assumes that all
juveniles mature at exactly the same age τ . This is an approximation which will
not always be realistic. An alternative is to use a distributed delay term allowing
for a distribution of maturation times, weighted by a probability density function,
for more information; see Al-Omari and Gourley [2].

Competition and unharvested systems with time delay have been studied by
many others. For example, see [10] and Al-Omari and Gourley [3]. But with
harvesting Song and Chen [4] have considered system (1.1) with constant harvesting
of the mature population:

u′i(t) = αum(t)− γui(t)− α e−γτum(t− τ),
u′m(t) = α e−γτum(t− τ)− βu2

m(t)− Eum(t),
ui(t) = φ1(t) ≥ 0, um(t) = φ2(t) ≥ 0, − τ ≤ t ≤ 0, um(0) > 0,

where E measures the effort with which the mature population is harvested, φ2(t)
is the given initial mature population and φ1(t) is the initial immature population,
such that

ui(0) =
∫ 0

−τ

αum(s)e−γsds.

They established conditions for the global stability of the equilibria A = (0, 0) and
B = (u∗i , u

∗
m), where

u∗i =
α

βγ
(1− e−γτ )(αe−γτ − E) and u∗m =

1
β

(αe−γτ − E).

Also, see for example, ([5] and [6]).
The above models are examples of systems containing delay dependent coeffi-

cients of the form e−γτ . Generally the equilibria of this kind of equation show a
dependence on the time delay and, in these particular models, also as in our model
below, it is because the individuals may die during the maturation phase leading
to a reduced mature adult equilibrium population. The analysis of such models
(even the linearised analysis) is very complicated. An interesting extension of sys-
tem (1.1) is the model below studied by Al-Omari and Gourley [7] in which the
delay is state-dependent, taken to be a function of the total population ui + um.
In [7] we proposed the following system, in which u = ui + um:

u′i(t) = R(um(t))− γui(t)− e−γτ(u)R(um(t− τ(u))),
u′m(t) = e−γτ(u)R(um(t− τ(u)))− dum(t),

where the function R(um(t)) behaves linearly in um for small um, but is effectively
zero for large um. The function R(um) represents the birth rate, and the two terms
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−γui and −dum represent the deaths of immatures and matures respectively. The
delayed term in both equations represents adult recruitment. The state-dependent
time delay τ(u) is taken to be an increasing differentiable function of the total
population u = ui + um, so that τ ′(u) ≥ 0, and we shall also assume that

τmin ≤ τ(u) ≤ τmax,

with τ(0) = τmin and τ(∞) = τmax. These assumptions imply that the maturation
time for the species depends on the total number of them (matures plus immatures)
around. The greater the number of individuals present, the longer they will take
to mature. This assumption is known to be realistic in the case of Antarctic whale
and seal populations [8]. Lowering the number of whales apparently causes the
remaining whales to mature more quickly (presumably because there is more food
for the remaining whales). Since both immature and mature whales need food, this
is the motivation for having the maturation delay depending on the sum ui + um

of the mature and immature populations.
In this paper, we will modify system (1.1) to model two competing species with

harvesting of the mature and immature members of each species. Thus we are
concerned with the following system

dUi(t)
dt

= αuUm(t)− γuUi(t)− αue−(γu+E1)τuUm(t− τu)− E1Ui(t)(1.2)

dUm(t)
dt

= αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− c1Um(t)Vm(t)− E2Um(t)

dVi(t)
dt

= αvVm(t)− γvVi(t)− αve−(γv+E3)τvVm(t− τv)− E3Vi(t)

dVm(t)
dt

= αve−(γv+E3)τvVm(t− τv)− βvV 2
m(t)− c2Um(t)Vm(t)− E4Vm(t),

where Ui and Vi denote, respectively, the number of immature members and Um

and Vm are the number of mature adult members. The c1 and c2 measure the com-
petitive effect of V on U and U on V , respectively, and E1, E3 denote, respectively,
the harvesting effort of the two immature populations Ui and Vi; E2, and E4 denote,
respectively, the harvesting effort of the two mature species Um and Vm. The rate
at which individuals are born is taken to be proportional to the number of matures
at that time; this is the αuUm and αvVm terms. Death of immatures is modelled
by the terms −γuUi and −γvVi. Death of matures populations are modelled by
quadratic terms. The other terms, such as, αue−(γu+E1)τuUm(t− τu) appearing in
the first and second equations of system (1.2) represents the rate at time t at which
individuals leave the immature and enter the mature class, having just reached ma-
turity. These are individuals who were born at time t − τu. Therefore, the rate of
entering the mature class is αuUm(t− τu) times the fraction of those born at time
t−τu who are still alive now and are not harvested. That this fraction is e−(γu+E1)τu

follows from the assumption that the death and harvesting of immatures are fol-
lowing a linear law given by the terms −γuUi and −E1Ui. Of course, Um and Vm
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in (1.2) refer only to the adult members of the two species. Thus, it is assumed that
competition occurs only between the adults. Since many species strongly protect
their young, we feel this is not too unrealistic an assumption. Also it is assumed
that competition effects are of the classical Lotka-Volterra kind, (see for example,
Murray [9], Gopalsamy [10] and Kuang [11]). When two or more species interact
the population dynamics of each species is affected. In a predator-prey situation
the growth rate of one species is decreased and the other is increased. While in
competition the growth rates of both species are decreased.

For initial data of system (1.2), we assume that

Ui(t) = φ1(t) ≥ 0, Um = φ2(t) ≥ 0 for − τu ≤ t ≤ 0(1.3)
Vi(t) = ψ1(t) ≥ 0, Vm = ψ2(t) ≥ 0 for − τv ≤ t ≤ 0,

such that

Ui(0) =
∫ 0

−τu

αuUm(s)e(γu+E1)sds and Vi(0) =
∫ 0

−τv

αvVm(s)e(γv+E3)sds,

which represent the number of immatures that have survived to time t = 0 (the
number of those that are still alive and still immature and have not been harvested).
We assume also that

(1.4) Um(0), Vm(0), Ui(0), Vi(0) > 0.

2. Positivity and boundedness

In this section, we address positivity and boundedness of the solution of the sys-
tem (1.2). This is important since the solutions of the system represent populations,
and because we anticipate that limited resources will place a natural restriction to
how many individuals can survive.

Theorem 1. If the initial data (1.3), and the assumption (1.4) hold, then the so-
lutions of system (1.2) are positive and bounded for all t ≥ 0.

Proof. We first show that Um(t) > 0 for all t > 0. Assume, for contradiction, that
there exists a first time t0 > 0 such that Um(t0) = 0. Then Um(t) > 0 for t ∈ [0, t0)
and

dUm(t0)
dt

= αue−(γu+E1)τuUm(t0 − τu) > 0.

Thus, U ′
m(t0) > 0. This is a contradiction since it implies Um(t) must be negative

for t just before t0, which contradicts the choice of t0.
Similarly, we can prove that Vm(t) > 0 for all t ≥ 0.
Proving that Ui(t) > 0 for t > 0 is a little more difficult. By positivity of Um(t),
then for 0 ≤ t ≤ τu. We have

dUi(t)
dt

≥ −γuUi(t)− αue−(γu+E1)τuUm(t− τu)− E1Ui(t).
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By comparison, Ui(t) ≥ u(t) where u(t) is the solution of

du(t)
dt

= −γuu(t)− αue−(γu+E1)τuUm(t− τu)− E1u(t)

subject to u(0) = Ui(0) > 0. But the solution of the last equation is

u(t) = e−(γu+E1)t

(
Ui(0)−

∫ t

0

αue(γu+E1)se−(γu+E1)τuUm(s− τu)ds

)
.

Hence, by (1.3)

u(τu) = e−(γu+E1)τu

(∫ 0

−τu

αuUm(ξ)e(γu+E1)ξdξ

−
∫ τu

0

αue(γu+E1)se−(γu+E1)τuUm(s− τu)ds

)
,

which gives u(τu) = 0, and therefore, u(t) > 0 for t ∈ [0, τu), and so Ui(t) > 0 on
[0, τu). Repeating this argument with t = τu as the initial time yields that Ui(t) > 0
on [τu, 2τu). This argument can be continued to include all positive times, and so
we have shown that Ui(t) > 0 for all t > 0. Similarly, we can show that Vi(t) > 0
for all t > 0.
Now to prove the boundedness of positive solutions of system (1.2), we choose the
function

V (t) = Ui(t) + Um(t) + Vi(t) + Vm(t).

By positivity of solutions, all terms in V are positive. Now

V ′(t) = (αu − E2)Um(t)− βuU2
m(t)− (γu + E1)Ui(t)− c1Um(t)Vm(t)

+(αv − E4)Vm(t)− (γv + E3)Vi(t)− βvV 2
m(t)− c2Um(t)Vm(t).

Since Um, Vm > 0, then by calculating the derivative of V (t) along solutions of
system (1.2), we have

V ′(t) ≤ (αu − E2)Um(t)− (γu + E1)Ui(t) + (αv − E4)Vm(t)− (γv + E3)Vi(t).

And for ε > 0, where ε < max{γu + E1, γv + E3}, we have

V ′(t) + εV (t) ≤ (αu + ε− E2)Um(t)− βuU2
m(t)− (γu + ε + E1)Ui(t)

+ (αv + ε− E4)Vm(t)− (γv + ε + E3)Vi(t)− βvV 2
m(t)

≤ (αu + ε− E2)Um(t) + (αv + ε− E4)Vm(t).

Hence, there exists a positive number m such that

V ′(t) + εV (t) < m.
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So that

V (t) <
m

ε
+

(
V (0)− m

ε

)
e−εt < ∞.

Therefore, we deduce that Ui, Um, Vi and Vm are bounded. ¤

3. Asymtotic stability of equilibria

The equilibria of System (1.2) are determined by setting U̇i = U̇m = V̇i = V̇m =
0 in system (1.2), and solving the resulting algebraic equations

αuUm(t)− γuUi(t)− αue−(γu+E1)τuUm(t− τu)− E1Ui(t) = 0,

αue−(γu+E1)τuUm(t− τu)− βuU2(t)− c1U(t)V (t)− E2Um(t) = 0,

αvVm(t)− γvVi(t)− αve−(γv+E3)τvVm(t− τv)− E3Vi(t) = 0,

αve−(γv+E3)τvVm(t− τv)− βvV 2
m(t)− c2U(t)V (t)− E4Vm(t) = 0.

Then system (1.2) has four equilibria: E0(0, 0, 0, 0), Eu(Ūi, Ūm, 0, 0), Ev(0, 0, V̄i, V̄m),
and Ê(Ûi, Ûm, V̂i, V̂m) where:

Ūi =
αu(αue−(γu+E1)τu − E2)(1− e−(γu+E1)τu)

(γu + E1)βu
, Ūm =

αue−(γu+E1)τu − E2

βu
,

V̄i =
αv(αve−(γv+E3)τv − E4)(1− e−(γv+E3)τv )

(γv + E3)βv
, V̄m =

αve−(γv+E3)τv − E4

βv
,

Ûi =
αu(1− e−(γu+E1)τu)[βv(αue−(γu+E1)τu − E2)− c1(αve−(γv+E3)τv − E4)]

(γu + E1)(βuβv − c1c2)
,

Ûm =
βv(αue−(γu+E1)τu − E2)− c1(αve−(γv+E3)τv − E4)

βuβv − c1c2
,

V̂i =
αv(1− e−(γv+E3)τv )[βu(αve−(γv+E3)τv − E4)− c2(αue−(γu+E1)τu − E2)]

(γv + E3)(βuβv − c1c2)
,

V̂m =
βu(αve−(γv+E3)τv − E4)− c2(αue−(γu+E1)τu − E2)

βuβv − c1c2
.

The stability of the four steady states is determined by linearizing system (1.2)
about them. To do so, let E∗ = (U∗

i , U∗
m, V ∗

i , V ∗
m) be an arbitrary equilibrium and

set: Ui = xi + U∗
i , Um = xm + U∗

m, Vi = yi + V ∗
i and Vm = ym + V ∗

m and neglecting
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higher order term in xi, xm, yi and ym to obtain:

dxi

dt
= αuxm(t)− γuxi(t)− αue−(γu+E1)τuxm(t− τu)− E1xi(t)

dxm

dt
= αue−(γu+E1)τuxm(t− τu)− 2βuxm(t)U∗

m − c1xm(t)V ∗
m − c1ym(t)U∗

m

− E2xm(t)
dyi

dt
= αvym(t)− γvyi(t)− αve−(γv+E3)τvym(t− τv)− E3yi(t)

dym

dt
= αve−(γv+E3)τvym(t− τv)− 2βvym(t)V ∗

m − c2xm(t)V ∗
m − c2ym(t)U∗

m

− E4ym(t).

For the equilibrium E0 of (1.2), its characteristic equation is

(λ + γu + E1)
(
λ + E2 − αue−τu(γu+E1+λ)

)
(3.1)

(λ + γv + E3)
(
λ + E4 − αve−τv(γv+E3+λ)

)
= 0

has at least a positive eigenvalue, which occurs from either the roots of the second
or the roots of fourth bracketed factors. If E2 < αue−τu(γu+E1), then the point of
intersection of y = λ + E2 and y = αue−τu(γu+E1+λ) is such a positive eigenvalue.
Therefore, the equilibrium E0 is unstable. The equilibrium E0 is unstable has
ecologically interpretation, if the harvesting effort of the four populations are not
large enough, if the immature populations do not have a high deathrate, or the
two species have a low maturation time. For the equilibrium Eu the characteristic
equation is

(λ + γu + E1)
(
λ + 2βuŪm + E2 − αue−τu(γu+E1+λ)

)
(λ + γv + E3)

(
λ + c2Ūm + E4 − αve−τv(γv+E3+λ)

)
= 0.

It has two negative eigenvalues λ = −(γu + E1) and λ = −(γv + E3). The other
eigenvalues are the roots λ of

(3.2) λ + 2βuŪm + E2 − αue−τu(γu+E1+λ) = 0,

together with the roots λ of the equation

(3.3) λ + c2Ūm + E4 − αve−τv(γv+E3+λ) = 0.

We will find the condition which determines that all roots of (3.2) satisfy Reλ < 0.
Assume for contradiction, that there exists a root λ∗ such that Reλ∗ ≥ 0. Then

∣∣∣λ∗ + 2αue−(γu+E1)τu − E2

∣∣∣ =
∣∣∣αue−τu(γu+E1+λ∗)

∣∣∣ ≤ αue−(γu+E1)τu
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since Reλ∗ ≥ 0. This implies that λ∗ is in the circle in the complex λ plane centered
at λ = −2αue−(γu+E1)τu +E2 and of radius αue−(γu+E1)τu . Therefore, we will have
a contradiction if

(3.4) αue−(γu+E1)τu > E2.

Now, for the equation (3.3) we have
∣∣∣∣∣λ
∗ +

c2

(
αue−(γu+E1)τu − E2

)

βu
+ E4

∣∣∣∣∣ ≤ αve−(γv+E3)τv ,

which leads to a contradiction if

(3.5) c2

(
αue−(γu+E1)τu − E2

)
> βu

(
αve−(γv+E3)τv − E4

)
.

Consequently, if the two conditions (3.4) and (3.5) are both hold, then the equi-
librium Eu is linearly stable. In similar way, we can show that the equilibrium Ev

which has the characteristic equation

(λ + γu + E1)
(
λ + 2βvV̄m + E4 − αve−τv(γv+E3+λ)

)
·

(λ + γv + E3)
(
λ + c1V̄m + E2 − αue−τu(γu+E1+λ)

)
= 0,

is linearly stable if

(3.6) αve−(γv+E3)τv > E4,

and

(3.7) c1

(
αve−(γv+E3)τv − E4

)
> βv

(
αue−(γu+E1)τu − E2

)
.

Thus if (3.4), (3.5), (3.6) and (3.7) hold then Eu and Ev are both linearly stable,
and the numerators of the components Ui, Um, Vi and Vm of the equilibrium Ê are
all negative. But, at the same time, (3.5) and (3.7) imply that

βu <
c2(αue−(γu+E1)τu − E2)

αve−(γv+E3)τv − E4
, βv <

c1(αve−(γv+E3)τv − E4)
αue−(γu+E1)τu − E2

,

so that βuβv < c1c2, i.e., the denominators of all components of the equilibrium
Ê are negative too. Thus under these circumstances Ui, Um, Vi, Vm> 0 so that
the equilibrium Ê is feasible. Also we can see if (3.5) and (3.7) are both reversed,
then the equilibria Eu and Ev are both linearly unstable and again Ê is feasible
under these circumstances. But if one of the equilibria Eu, Ev is stable and the
other unstable, then the coexistence equilibrium Ê is not feasible. Finally, for the
equilibrium Ê the characteristic equation is

(λ + γu + E1)
(
λ + c1V̂m + 2βuÛm + E2 − αue−τu(γu+E1+λ)

)
·

(λ + γv + E3)
(
λ + c2Ûm + 2βvV̂m + E4 − αve−τv(γv+E3+λ)

)
= 0.
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It has two negative eigenvalues λ = −(γu + E1) and λ = −(γv + E3). What we are
looking for now is to find under what conditions the second and fourth bracketed
factors have negative eigenvalues. It is not difficult to see that the conditions for
all roots of these factors to satisfy Reλ < 0 are

(3.8) c1

(
αve−(γv+E3)τv − E4

)
< βv

(
αue−(γu+E1)τu − E2

)
,

and

(3.9) c2

(
αue−(γu+E1)τu − E2

)
< βu

(
αve−(γv+E3)τv − E4

)
.

Therefore, the equilibrium Ê is stable if equations (3.8) and (3.9) satisfy. We
already know that the equilibria Eu and Ev cannot exist if E2 > αue−(γu+E1)τu

and E4 > αve−(γv+E3)τv because Ū and V̄ are negative under these conditions. In
fact, we shall prove in the next section that under these conditions the equilibrium
E0 is globally asymptotically stable. Therefore, we assume that (3.4), and (3.6)
hold throughout this paper.

Before proceeding, we shall need the following theorem.

Theorem 2. Let u(t) be the solution of

(3.10)
du

dt
= αue−(γu+E1)τuu(t− τu)− βuu2(t)−Au(t),

where u(t) > 0 for −τ ≤ t ≤ 0.

(I) If 0 ≤ A < αue−(γu+E1)τu , then lim
t→∞

u(t) = û, where

(3.11) û =
1
βu

[
αue−(γu+E1)τu −A

]
.

(II) If A > αue−(γu+E1)τu , then lim
t→∞

u(t) = 0.

Proof. (I) We can show that u(t) is bounded and positive by the same way we
have done in section 1. The prove of this theorem is in several stages. First we
deal with the cases when u(t) is eventually monotonically decreasing or increasing,
i.e., monotone for all t sufficiently large. But by positivity of solutions, u(t) is not
eventually monotonically decreasing because if so, then u(t) must approaches some
limit û ≥ 0. This limit must be an equilibrium of (3.10) and therefore, either zero
or the value stated. Zero is ruled out since a standard linearized analysis yields
that the zero solution of (3.10) is linearly unstable under the stated condition on
A. So now assume, for contradiction, that u(t) is eventually monotonic increasing
with u(t) →∞ as t →∞ then in this case u(t− τ) ≤ u(t) for all t sufficiently large,
and therefore,

du(t)
dt

≤ αue−(γu+E1)τuu(t)− βuu2(t)−Au(t).
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But u(t) →∞. So, for t sufficiently large, we must have u̇(t) < 0 contradicting the
assumption that u(t) is eventually monotonic increasing. We must now conclude
that any eventually monotone solution approaches a non-zero limit, say ū. This
limit must be an equilibrium of (3.10) and so, since ū > 0 we must have ū = û.
We now consider the case when u(t) is not eventually monotonic. Then there exists
a sequence tk →∞ as t →∞ such that u′(tk) = 0 and u(tk) → lm := lim sup

t→∞
u(t).

We want to show that lm = û. Suppose for contradiction that lm > û. Let ε > 0
be sufficiently small. Then there exists T > 0 such that if t ≥ T > τ we have

u(t) ≤ lm + ε.

Since tk →∞ as k →∞, there exists K such that if k ≥ K then

tk − τu ≥ T.

Then, for k ≥ K
u(tk − τu) ≤ lm + ε.

Applying equation (3.10) when t = tk where k ≥ K, we have

0 = u′(tk) ≤ αue−(γu+E1)τu(lm + ε)− βuu2(tk)−Au(tk).

Letting k →∞,

0 ≤ αue−(γu+E1)τu(lm + ε)− βul2m −A lm.

This is true for all ε > 0 sufficiently small. Thus we must have

0 ≤ αue−(γu+E1)τu lm − βul2m −A lm.

But since lm > û, we have

αue−(γu+E1)τu < βulm + A.

Therefore,

0 ≤ αue−(γu+E1)τu lm − βul2m −A lm

< (βulm + A)lm − βul2m −Alm = 0.

Contradiction. Hence lm = û, that is lim
t→∞

u(t) = û.

(II) This can be achieved in three stages. We shall first prove that u(t) is not
eventually monotonic increasing. Suppose on the contrary. We already know that
u(t) is bounded above. Therefore there exists lm ≥ 0 with

u(t) → lm as t →∞.
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We want to show that lm = 0. Assume that lm > 0 then, letting t → ∞, equa-
tion (3.10) gives

0 ≤ αue−(γu+E1)τu lm −Alm,

which leads to
0 ≤ lm

(
αue−(γu+E1)τu −A

)
.

But since lm > 0 we must have

αue−(γu+E1)τu −A ≥ 0.

This contradicts the hypothesis of the theorem that A > αue−(γu+E1)τu .
The second stage is to consider the possibility that u(t) is eventually monotonic
decreasing. Then since u(t) ≥ 0, u(t) must approach a limit lm as t →∞. We want
to show that lm = 0. This is trivial, since the assumption that lm > 0 leads to
contradiction by following the same arguments as described above. The final step
in our proof is to consider the case when u(t) is not monotonic. Then there exists a
sequence of times tk →∞ such that u′(tk) = 0 and u(tk) → lm := lim sup

t→∞
u(t). We

want to show that lm = 0. Let ε > 0 be sufficiently small. Then there exists T > 0
such that if t ≥ T we have

u(t) ≤ lm + ε.

Since tk →∞ as k →∞, there exists K such that if k ≥ K then

tk − τu ≥ T.

Then, for k ≥ K
u(tk − τu) ≤ lm + ε.

Applying equation (3.10) when t = tk where k ≥ K, we have

0 = u′(tk) ≤ αue−(γu+E1)τu(lm + ε)− βuu2(tk)−Au(tk).

Letting k →∞,
0 ≤ αue−(γu+E1)τu(lm + ε)−A lm.

This is true for all ε > 0 sufficiently small. Thus we must have

e−(γu+E1)τu ≥ A.

This contradicts the hypothesis of the theorem unless lm = 0, and the proof of
Theorem 2 is complete. ¤

In the proof of theorem 3 below, and in subsequent theorems, we shall use a
comparison principle. For scalar equations, the essential requirement for a compar-
ison principle to hold is that the reaction term be a nondecreasing function of the
delay variable (see, for example, Martin and Smith [12]). The following lemma will
be useful and follows easily from the results in [12].
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Lemma 1. Let v(t) be a solution of

dv(t)
dt

= αe−γτv(t− τ)− βv2(t)− λv(t), t > 0

and u(t) some function satisfying

(3.12)
du(t)

dt
≥ αe−γτu(t− τ)− βu2(t)− λu(t), t > 0.

Assume also that u(t) ≥ v(t) for all t ∈ [−τ, 0]. Then u(t) ≥ v(t) for all t > 0.

Remarks. An analogous result holds with the inequalities reversed, and we shall
need this also. In our applications of these comparison results we shall often find
that a differential inequality of the form (3.12) holds only for t above some value,
say t1, and not for all t > 0. In that case the initial time is simply thought of
as t1 rather than 0, and u(t) ≥ v(t) is arranged to hold for t ≤ t1 by appropriate
definition of v(t) for values of t ≤ t1. In the interests of clarity, we shall not always
elaborate on this latter point in detail.

3.1. Global asymptotically stable of E0

If E2 > αue−(γu+E1)τu and E4 > αve−(γv+E3)τv , then system (1.2) has a non-
negative equilibrium E0(0, 0, 0, 0). We shall prove that E0 is globally asymptotically
stable. It is easy to show that E0 is locally asymptotically stable since all eigen-
values of the characteristic equation (3.1) have Re(λ) < 0 under these asumptions.
The biological meaning of the conditions are obvious: if the harvesting efforts of
the two species (immatures and matures) are large enough, if the two species have
a long maturation time delay τu and τv, if they have a large immature mortality
rate γu and γv, or if they have insufficient live births αu and αv.

Theorem 3. Let the initial data (1.3), and (1.4) hold, and assume that

E2 > αue−(γu+E1)τu and E4 > αve−(γv+E3)τv .

Then (Ui(t), Um(t), Vi(t), Vm(t)) → (0, 0, 0, 0) as t →∞.

Proof. Since Um(t) ≥ 0 and Vm(t) ≥ 0 we have

dUm(t)
dt

= αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− c1Um(t)Vm(t)− E2Um(t)

≤ αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− E1Um(t).

Therefore, by the comparison theorem, 0 ≤ Um(t) ≤ u(t) where

du(t)
dt

= αue−(γu+E1)τuu(t− τu)− βuu2(t)− E1u(t),
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since E1 > αue−(γu+E1)τu , then by Theorem 2(II), we conclude that u(t) → 0 which
leads to Um(t) → 0. Similarly, we can prove that Vm(t) → 0. Now we show that
Ui → 0 as t → 0. The first equation of system (1.2) is

dUi(t)
dt

= αuUm(t)− γuUi(t)− αue−(γu+E1)τuUm(t− τu)− E1Ui(t).

Suppose lim
t→∞

Ui(t) does not exist, then there exist two sequences tmn and tMn such
that

lim
t→∞

Ui(tmn ) = Uim , U̇i(tmn ) = 0

and
lim

t→∞
Ui(tMn ) = UiM ,U̇i(tMn ) = 0,

such that Uim < UiM , Ui(tmn ) 6= 0 and Ui(tMn ) 6= 0. Therefore,

0 = U̇i(tmn ) = αuUm(tmn )− γuUi(tmn )− αue−(γu+E1)τuUm(tmn − τu)− E1Ui(tmn )
0 = U̇i(tMn ) = αuUm(tMn )− γuUi(tMn )− αue−(γu+E1)τuUm(tMn − τu)− E1Ui(tMn ).

But since lim
t→∞

Um(t) = 0, then we have

Uim = lim
t→∞

Ui(tmn ) = lim
t→∞

Ui(tMn ) = UiM ,

a contradiction. Therefore, lim
t→∞

Ui(t) exists. But since Ui(t) is bounded, then

lim
t→∞

U̇i(t) = 0.

Thus, by the first equation of system (1.2), we have

lim
t→∞

Ui(t) = 0.

Similarly we can show that
lim

t→∞
Vi(t) = 0.

This completes the proof of Theorem 3. ¤

3.2. Global stability of Eu

We shall prove a theorem on the global stability of the equilibrium point
Eu(Ūi, Ūm, 0, 0) of system (1.2), in the situation when the other equilibrium
Ev(0, 0, V̄i, V̄m) of system (1.2) is linearly unstable. This means that the com-
petition between the two species Um and Vm is strong and/or significant adult
harvesting in Vm species, and the species cannot coexist. One of them, in this case
the Vm population (immature and mature), dies out.
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Theorem 4. Let the initial data (1.3), and (1.4) hold, and assume that

(3.13) c2

(
αue−(γu+E1)τu − E2

)
> βu

(
αve−(γv+E3)τv − E4

)
,

and

(3.14) c1

(
αve−(γv+E3)τv − E4

)
< βv

(
αue−(γu+E1)τu − E2

)
.

Then (Ui(t), Um(t), Vi(t), Vm(t)) → (Ūi, Ūm, 0, 0) as t →∞.

Proof. We shall first show that (Um(t), Vm(t)) → (Ūm, 0). Let U = lim supt→∞ Um(t),
U = lim inft→∞ Um(t), V = lim supt→∞ Vm(t) and V = lim inft→∞ Vm(t). Now,
since

dUm(t)
dt

= αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− c1Um(t)Vm(t)− E2Um(t)

≤ αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− E2Um(t),

we can conclude from this and Theorem 2(I) that U ≤ UB where

UB =
αue−(γu+E1)τu − E2

βu
,

is the Um component of the equilibrium Êu. By positivity of Vm(t) we also know
that V ≥ 0. To complete the proof it suffices to find two sequences {Mu

m}, {Nv
m}

with the properties that U ≥ Mu
m for each m with Mu

m → UB as m → ∞ (so that
U ≥ UB), and V ≤ Nv

m for each m with Nv
m → 0 as m →∞. As a first step in this

process, let v1(t) satisfy

dv1(t)
dt

= αve−(γv+E3)τvv1(t− τv)− βvv2
1(t)− E4v1(t), t > 0

with, for t ≤ 0, v1(t) ≡ max{V (t), t ∈ [−τv, 0]} > 0. Then

lim
t→∞

v1(t) =
αve−(γv+E3)τv − E4

βv
.

Since Um(t) and Vm(t) are non-negative,

dVm(t)
dt

= αve−(γv+E3)τvVm(t− τv)− βvV 2
m(t)− c2Um(t)Vm(t)−E4Vm(t)

≤ αve−(γv+E3)τvVm(t− τv)− βvV 2
m(t)− E4Vm(t).

By comparison, Vm(t) ≤ v1(t) and therefore

V = lim sup
t→∞

Vm(t) ≤ lim
t→∞

v1(t) =
αve−(γv+E3)τv − E4

βv
:= Nv

1 .
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Let ε > 0 be sufficiently small that

(3.15) 0 < ε <
βv(αue−(γu+E1)τu − E2)− c1(αve−(γv+E3)τv − E4)

βvc1
.

There exists t1 > τ such that Vm(t) ≤ Nv
1 + ε for all t ≥ t1. For t > t1 let u1(t)

evolve according to

du1(t)
dt

= αue−(γu+E1)τuu1(t− τu)− βuu2
1(t)− c1u1(t)(Nv

1 + ε)− E2u1(t),

and, for t ∈ [t1 − τu, t1], let

u1(t) ≡ min{U(t), t ∈ [t1 − τu, t1]},

which is strictly positive, since Um(t) > 0 on (0,∞). It is not necessary to define
u1(t) for t < t1 − τu since Lemma 1 is now being applied with initial time t1 rather
than 0.

Since ε satisfies (3.15), Theorem 2(I) yields that

lim
t→∞

u1(t) =
1
βu

[
αue−(γu+E1)τu − E2 − c1(Nv

1 + ε)
]
.

Now, since Nv
1 + ε ≥ Vm(t) for t ≥ t1, we have, for such t,

dUm(t)
dt

= αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− c1Um(t)Vm(t)− E2Um(t)

≥ αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− c1U(t)(Nv

1 + ε)− E2Um(t).

By comparison, Um(t) ≥ u1(t) and therefore

U = lim inf
t→∞

Um(t) ≥ lim
t→∞

u1(t) =
1
βu

[
αue−(γu+E1)τu − E2 − c1(Nv

1 + ε)
]
.

Since this is true for any ε > 0 satisfying (3.15), it follows that U ≥ Mu
1 where

Mu
1 =

1
βu

[
αue−(γu+E1)τu − E2 − c1N

v
1

]
.

Let ε > 0. There exists t2 > 0 such that Um(t) ≥ Mu
1 − ε for all t ≥ t2. For t > t2

let v2(t) be the solution of

dv2(t)
dt

= αve−(γv+E3)τvv2(t− τv)− βvv2
2(t)

− βu(αve−(γv+E3)τv − E4)
αue−(γu+E1)τu − E2

(Mu
1 − ε)v2(t)− E4v2(t),
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with appropriate “initial data” on the interval [t2 − τ, t2]. Now

dVm(t)
dt

= αve−(γv+E3)τvVm(t− τv)− βvV 2
m(t)− c2Um(t)Vm(t)−E4Vm(t)

≤ αve−(γv+E3)τvVm(t− τv)− βvV 2
m(t)

− βu(αve−(γv+E3)τv − E4)
αue−(γu+E1)τu − E2

(Mu
1 − ε)Vm(t)− E4Vm(t),

where we have used (3.13). By comparison, Vm(t) ≤ v2(t). But, by Theorem 2, and
using the fact that

Mu
1 <

1
βu

[
αue−(γu+E1)τu − E2

]
,

lim
t→∞

v2(t) =
1
βv

[
αve−(γv+E3)τv − E4 − βu(αve−(γv+E3)τv − E4)

αue−(γu+E1)τu − E2
(Mu

1 − ε)
]

.

Hence

V = lim sup
t→∞

Vm(t) ≤ lim
t→∞

v2(t)

=
1
βv

[
αve−(γv+E3)τv − E4 − βu(αve−(γv+E3)τv − E4)

αue−(γu+E1)τu − E2
(Mu

1 − ε)
]

.

Since ε is arbitrary, we conclude that V ≤ Nv
2 where

(3.16) Nv
2 =

1
βv

[
αve−(γv+E3)τv − E4 − βu(αve−(γv+E3)τv − E4)

αue−(γu+E1)τu − E2
Mu

1

]
.

Now, let ε > 0 be sufficiently small that the expression given below for
limt→∞ u2(t) is positive. That this is possible follows from the second inequal-
ity (3.14) in the hypotheses of Theorem 4, together with the fact that Nv

2 satisfies

Nv
2 <

1
βv

[
αve−(γv+E3)τv − E4

]
.

There exists t3 > 0 such that Vm(t) ≤ Nv
2 + ε for all t ≥ t3. For t > t3 let u2(t) be

a suitable solution of

du2(t)
dt

= αue−(γu+E1)τuu2(t− τu)− βuu2
2(t)− E2u2(t)− c1(Nv

2 + ε)u2(t).

Then, since

dUm(t)
dt

= αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− E2Um(t)− c1U(t)V (t)

≥ αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− E2Um(t)− c1(Nv

2 + ε)Um(t),
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we have Um(t) ≥ u2(t). Also

lim
t→∞

u2(t) =
1
βu

[
αue−(γu+E1)τu − E2 − c1(Nv

2 + ε)
]
.

Hence
U ≥ 1

βu

[
αue−γu+E1)τu − E2 − c1(Nv

2 + ε)
]
.

By the arbitrariness of ε > 0, U ≥ Mu
2 where

(3.17) Mu
2 =

1
βu

[
αue−(γu+E1)τu − E2 − c1N

v
2

]
.

Continuing this process, we obtain two sequences Nv
m, Mu

m, m = 1, 2, 3, · · · such
that, for m ≥ 2,

(3.18) Nv
m =

1
βv

[
αve−(γv+E3)τv − E4 − βu(αve−(γv+E3)τv − E4)

αue−(γu+E1)τu − E2
Mu

m−1

]
,

and

(3.19) Mu
m =

1
βu

[
αue−(γu+E1)τu − E2 − c1N

v
m

]
.

Combining these,

Nv
m =

c1(αve−(γv+E3)τv − E4)
βv(αue−(γu+E1)τu − E2)

Nv
m−1,

which confirms that all the Nv
m are positive. Furthermore, by assumption (3.14),

Nv
m → 0 as m →∞. Hence, by (3.19),

lim
m→∞

Mu
m =

1
βu

[αue−(γu+E1)τu − E2] = UB .

Therefore
lim

t→∞
Um(t) = UB ,

and
lim

t→∞
Vm(t) = 0.

Now we show that lim
t→∞

Ui(t) = Ūi. Since Um(t) → Ūm then for any t ≥ T > τ , and

solving the first equation of system (1.2) for Ui, we have

Ui(t) = Ui(T )e−(γu+E1)(t−T )

+ αe−(γu+E1)t

∫ t

T

e(γu+E1)s
[
Um(s)− e−(γu+E1)τuUm(s− τu)

]
ds.
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Hence
∣∣Ui(t)− Ūi

∣∣ ≤ Ui(T )e−(γu+E1)(t−T )

+
∣∣∣∣αue−(γu+E1)t

∫ t

T

e(γu+E1)s
[
Um(s)− e−(γu+E1)τuUm(s− τu)

]
ds− Ūi

∣∣∣∣ .

Now, by using the fact that if lim
s→∞

f(s) = f0, then

lim
t→∞

∫ t

T

e−(γu+E1)(t−s)f(s)ds = f0 lim
t→∞

∫ t

T

e−(γu+E1)(t−s)ds = f0(γu + E1)−1,

we have

lim
t→∞

∣∣Ui(t)− Ūi

∣∣ ≤
∣∣∣(γu + E1)−1

(
αuŪm − αue−(γu+E1)τuŪm

)
− Ūi

∣∣∣

=
∣∣∣(γu + E1)−1αuβ−1

u

(
αue−(γu+E1)τu − E2

)(
1− e−(γu+E1)τu

)
− Ūi

∣∣∣
= 0.

Therefore, we have
lim

t→∞
Ui(t) = Ūi.

Now, we show that lim
t→∞

Vi(t) = 0. The fourth equation of system (1.2) is

V ′
i (t) = αvVm(t)− γvVi(t)− αve−(γv+E3)τvVm(t− τv)− E3Vi(t).

Since Vm(t) → 0 as t →∞, then for ε > 0, there exists T > 0 such that, for t ≥ T ,

−ε < αvVm(t)− αve−(γv+E3)τvVm(t− τv) < ε.

Then, for t ≥ T ,
V ′

i (t) < ε− (γv + E3)Vi(t).

Hence

(3.20) lim sup
t→∞

Vi(t) ≤ ε

γv + E3
.

Also, for t ≥ T ,
V ′

i (t) > −ε− (γv + E3)Vi(t),

which gives

(3.21) lim inf
t→∞

Vi(t) ≥ − ε

γv + E3
.

Since (3.20) and (3.21) are true for all ε > 0, then

0 ≤ lim inf
t→∞

Vi(t) ≤ lim sup
t→∞

Vi(t) ≤ 0.
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Consequently, we have
lim

t→∞
Vi(t) = 0.

This completes the proof of Theorem 4. ¤
The following theorem is an analogue of Theorem 4, for the situation when the

equilibrium Eu is unstable and Ev is asymptotically stable. The proof is similar to
that of Theorem 4.

Theorem 5. Let the initial data (1.3), and (1.4) hold, and assume that

(3.22) c2

(
αue−(γu+E1)τu − E2

)
< βu

(
αve−(γv+E3)τv − E4

)
,

and

(3.23) c1

(
αve−(γv+E3)τv − E4

)
> βv

(
αue−(γu+E1)τu − E2

)
.

Then (Ui(t), Um(t), Vi(t), Vm(t)) → (0, 0, V̄i, V̄m) as t →∞.

3.3. Global stability of Ê

We will prove that the coexistence equilibrium Ê(Ui, Um, Vi, Vm) is globally
asymptotically stable. The hypotheses in Theorem 6 below are those which imply
linear instability of both Eu and Ev. These hypotheses have various ecological
interpretations including weak interspecific competitio

Theorem 6. Let the initial data (1.3), and (1.4) hold, and assume that

(3.24) c2

(
αue−(γu+E1)τu − E2

)
< βu

(
αve−(γv+E3)τv − E4

)
,

and

(3.25) c1

(
αve−(γv+E3)τv − E4

)
< βv

(
αue−(γu+E1)τu − E2

)
.

Then (Ui(t), Um(t), Vi(t), Vm(t)) → (Ûi, Ûm, V̂i, V̂m) as t →∞.

Proof. Similar to the proof of theorem 4, we can easily have (Ui(t), Vi(t)) → (Ûi, V̂i).
Our approach to proving Theorem 4 is similar to prove (Um(t), Vm(t)) → (Ûm, V̂m),
but the situation is more complicated since we shall need four sequences, Nu

m, Nv
m,

Mu
m and Mv

m, m = 1, 2, 3, · · · . It is helpful to remember that Nm denotes an upper
bound, and Mm a lower bound, on the limsup and liminf respectively as t →∞, of
the variable in the superscript. We shall derive recursion formulae for these bounds
and use them to deduce the result.

From positivity of solutions we immediately obtain Nu
1 as follows:

dUm(t)
dt

≤ αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− E2Um(t).



50 J. F. M. Al-Omari

Hence
U = lim sup

t→∞
Um(t) ≤ 1

βu
[αue−(γu+E1)τu − E2] := Nu

1 .

In a similar way, we have

V ≤ 1
βv

[
αve−(γv+E3)τv − E4

]
:= Nv

1 .

Let ε > 0 be sufficiently small that

(3.26) ε <
βu

(
αve−(γv+E3)τv − E4

)− c2

(
αue−(γu+E1)τu − E2

)

βuc2
,

which is possible by (3.24). Let t1 > 0 be such that Um(t) ≤ Nu
1 + ε for all t ≥ t1,

and for t > t1 let mv
1(t) be a solution of

dmv
1(t)

dt
= αve−(γv+E3)τvmv

1(t− τ)− βv(mv
1(t))

2 − c2(Nu
1 + ε)mv

1(t)− E4m
v
1(t),

with appropriate initial data on [t1 − τv, t1]. Since ε satisfies (3.26), Theorem 2
applies and yields

lim
t→∞

mv
1(t) =

1
βv

[
αve−(γv+E3)τv − E4 − c2(Nu

1 + ε)
]
.

Since Nu
1 + ε ≥ Um(t) for t ≥ t1,

dVm(t)
dt

= αve−(γv+E3)τvVm(t− τ)− βvV 2
m(t)− c2Um(t)Vm(t)− E4Vm(t)

≥ αve−(γv+E30τVm(t− τv)− βvV 2
m(t)− c2(Nu

1 + ε)Vm(t)− E4Vm(t),

so that Vm(t) ≥ mv
1(t) and hence

V = lim inf
t→∞

Vm(t) ≥ lim
t→∞

mv
1(t) =

1
βv

[
αve−(γv+E3)τv − E4 − c2(Nu

1 + ε)
]
.

This is true for any ε > 0 satisfying (3.26) and hence

V ≥ 1
βv

[
αve−(γv+E3)τv − E4 − c2N

u
1

]
:= Mv

1 .

In exactly the same way, we can show that

U ≥ 1
βu

[
αue−(γu+E1)τu − E2 − c1N

v
1

]
:= Mu

1 ,

and, in doing so, the assumption (3.25) is used.
We shall now show how to find new upper bounds Nu

2 , Nv
2 in terms of the old

lower bounds Mv
1 , Mu

1 respectively. New lower bounds are then found from the new
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upper bounds by following the procedure already described. It will then be clear
how to proceed from the (m−1) th to the m th step in this process.n and significant
adult mortality.

Let ε > 0. There exists t2 > 0 such that Vm(t) ≥ Mv
1 − ε for all t ≥ t2. Then,

for t ≥ t2,

dUm(t)
dt

= αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− c1Um(t)Vm(t)− E2Um(t)

≤ αue−(γu+E1)τuUm(t− τ)− βuU2(t)− c1(Mv
1 − ε)Um(t)− E2Um(t).

Thus, if for t > t2 we denote by nu
2 (t) the solution of

dnu
2 (t)
dt

= αue−(γu+E1)τunu
2 (t− τ)− βu(nu

2 (t))2 − c1(Mv
1 − ε)nu

2 (t)− E2n
u
2 (t),

with appropriate initial data, then Um(t) ≤ nu
2 (t) and thus

U ≤ lim
t→∞

nu
2 (t) =

1
βu

[
αue−(γu+E1)τu − E2 − c1(Mv

1 − ε)
]
,

(we have used assumption (3.25) to deduce that nu
2 (t) has this limiting behaviour).

Since ε > 0 is arbitrary,

U ≤ 1
βu

[
αue−(γu+E1)τu − E2 − c1M

v
1

]
:= Nu

2 .

In the same way, and using (3.24), we deduce the following estimate for V :

V ≤ 1
βv

[
αve−(γv+E3)τv − E4 − c2M

u
1

]
:= Nv

2 .

One now sees that the transition from the (m−1) th to the m th step in this iterative
process is given by

Nu
m =

1
βu

[
αue−(γu+E1)τu − E2 − c1M

v
m−1

]
,

Nv
m =

1
βv

[
αve−(γv+E3)τv − E4 − c2M

u
m−1

]
,

Mu
m =

1
βu

[
αue−(γu+E1)τu − E2 − c1N

v
m

]
,

Mv
m =

1
βv

[
αve−(γv+E3)τv − E4 − c2N

u
m

]
,

and, of course,

Mu
m ≤ U ≤ U ≤ Nu

m and Mv
m ≤ V ≤ V ≤ Nv

m,
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for each m = 1, 2, 3, · · · . We need to show that Mu
m and Nu

m both approach Ûm as
m →∞, and that Mv

m and Nv
m both approach V̂m.

We see at once that

(3.27) Nu
m =

αuβve−(γu+E1)τu − c1αve−(γv+E3)τv

βuβv
+

c1c2

βuβv
Nu

m−1.

Note that (3.24) and (3.25) imply that

c1c2

βuβv
< 1.

We claim that Nu
m is a monotonically decreasing sequence that is bounded below by

Ûm. The boundedness below by Ûm follows immediately from (3.27) by induction.
Then, by (3.27), and using (3.25),

Nu
m

Nu
m−1

=
αuβve−(γu+E1)τu − c1αve−(γv+E3)τv

βuβvNu
m−1

+
c1c2

βuβv

≤ αuβve−(γu+E1)τu − c1αve−(γv+E3)τv

βuβvÛm

+
c1c2

βuβv

= 1,

so that Nu
m is monotonically decreasing. Hence Nu

m converges to a limit which,
by (3.27), equals Ûm.

Of course, convergence of Nu
m implies convergence of Mv

m, and it is easily checked
that Mv

m has the limit V̂m. The analysis for the remaining two sequences is similar.
The proof of the theorem is complete. ¤

4. Optimal harvesting policy of system (1.2)

Harvesting the species affects the mortality rate and, if it is not excessive, the
population adjusts and settles down to a new equilibrium state. So that the mod-
elling problem is how to maximize the sustained yield by determining the population
growth dynamics so as to fix the harvesting rate which keeps the population at its
maximum growth rate. Therefore, in this section, we will investigate the maximum
sustainable yield, the optimal harvesting policy, namely, the optimal harvesting ef-
fort, when the matures of system (1.2) are harvested. Generally, the population
exploitation should be of the mature population, which is more appropriate to the
economic and biological views of renewable resource management.
Case 1. The optimal harvesting policy when the mature population Um and Vm

are harvested respectively.
If only the mature species Um or Vm is subject to be harvested, then we have

the following theorem
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Theorem 7.

(I) If βvαue−γuτu > c1αve−γvτv , then the maximum sustainable yield is

Yu = E∗
2U∗

m =
(βvαue−γuτu − c1αve−γvτv )2

4βv (βuβv − c1c2)
,

where, the optimal harvesting effort

E∗
2 =

(βvαue−γuτu − c1αve−γvτv )
2βv

,

and the optimal population level

U∗
m =

(βvαue−γuτu − c1αve−γvτv )
2 (βuβv − c1c2)

.

(II) If βuαve−γvτv > c2αue−γuτu , then the maximum sustainable yield is

Yv = E∗
4V ∗

m =
(βuαve−γvτv − c2αue−γuτu)2

4βu (βuβv − c1c2)
,

where, the optimal harvesting effort

E∗
4 =

(βuαve−γvτv − c2αue−γuτu)
2βu

,

and the optimal population level

V ∗
m =

(βuαve−γvτv − c2αue−γuτu)
2 (βuβv − c1c2)

.

Proof. (I) Let Um = Ûm, the the harvesting of system (1.2) is

Yu = E2Ûm = E2

[
βv(αue−γuτu − E2)− c1αve−γvτv

βuβv − c1c2

]
.

In order to get the maximum sustainable yield, we calculate the derivative of Y1(E2)
for E2, we have

dYu

dE2
=
−2βvE2 + βvαue−γuτu − c1αve−γvτv

βuβv − c1c2
= 0,

which gives the optimal harvesting effort

E∗
2 =

(βvαue−γuτu − c1αve−γvτv )
2βv

,
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and substituting this into Ûm, we will have the optimal population level

U∗
m =

(βvαue−γuτu − c1αve−γvτv )
2 (βuβv − c1c2)

.

Therefore, the maximum sustainable yield is Yu = E∗
2U∗

m.
Similarly we can prove part (II) of the Theorem. ¤

Case2. The optimal harvesting policy when the mature populations Um and
Vm are harvested simultaneously.

Theorem 8. The maximum sustainable yield in system (1.2) is

YMSY = E∗
2U∗

m + E∗
4V ∗

m,

where, the optimal harvesting efforts E∗
2 and E∗

4 are given in the proof below, pro-
vided E∗

2 , E∗
4 > 0.

Proof. The second and fourth equations of system (1.2) are

dUm(t)
dt

= αue−(γu+E1)τuUm(t− τu)− βuU2
m(t)− c1Um(t)Vm(t)− E2Um(t),

dVm(t)
dt

= αve−(γv+E3)τvVm(t− τv)− βvV 2
m(t)− c2Um(t)Vm(t)− E4Vm(t).

If conditions (3.24) and (3.25) are satisfied, then the only nonnegative equilibrium
is Ê(Ûi, Ûm, V̂i, V̂m) which is globally asymptoticaly stable. Therefore, to have the
maximum sustainable yield, that is, to have the maximum values of equation
Y (E2, E4) = E2Ûm + E4V̂m, we have to solve

∂Y

∂E2
= −2βvE2 + βvαue−γuτu − c1αve−γvτv + (c1 + c2)E4 = 0

and
∂Y

∂E4
= −2βuE4 + βuαve−γvτv − c2αue−γuτu + (c1 + c2)E2 = 0.

Then by solving these two equations we get the optimal harvesting effort E∗
2 and

E∗
4 , where

E∗
2 =

αue−γuτu
(
2βuβv − c1c2 − c2

2

)
+ αvβue−γvτv (c2 − c1)

4βuβv − (c1 + c2)
2 ,

and

E∗
4 =

αuβve−γuτu (c1 − c2) + αve−γvτv
(
2βuβv − c1c2 − c2

1

)

4βuβv − (c1 + c2)
2 ,
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and the optimal population levels are given by

U∗
m =

βv(αue−γuτu − E∗
2 )− c1(αve−γvτv − E∗

4 )
βuβv − c1c2

=
2βvαue−γuτu − αv (c1 + c2) e−γvτv

4βuβv − (c1 + c2)
2

and,

V ∗
m =

βu(αve−γvτv − E∗
4 )− c2(αue−γuτu − E∗

2 )
βuβv − c1c2

=
2βuαve−γvτv − αu (c1 + c2) e−γuτu

4βuβv − (c1 + c2)
2 .

Therefore, the maximum sustainable yield, will be

YMSY = E∗
2U∗

m + E∗
4V ∗

m

=
1(

4βuβv − (c1 + c2)
2
)2

[
α2

uβv

(
4βuβv − (c1 + c2)

2
)

e−2γuτu

+ α2
vβu

(
4βuβv − (c1 + c2)

2
)

e−2γvτv

+ (αuαvc1c2 (3c1 − c2)− 4αuαvβuβv (c1 + c2)
+ αuαv

(
c3
1 + c3

2

))
e−γuτue−γvτv

]
.

¤

5. Discussion

In this paper, we have studied the dynamics of a two competitive stage-
structured population model, where the population has two life stages, immature
and mature, when the immature and mature of both species are harvested. The
equilibria of our model involve the maturation delays and the harvesting effort for
the immatures and the matures of each species. Therefore, the dynamics depends
heavily on the maturation delays and the harvesting effort. To see the role of these,
it is helpful to consider the particular case of the criteria for species Um to win and
species Vm to be driven to extinction Theorem 4, that is

c2

(
αue−(γu+E1)τu − E2

)
> βu

(
αve−(γv+E3)τv − E4

)
,

and
c1

(
αve−(γv+E3)τv − E4

)
< βv

(
αue−(γu+E1)τu − E2

)
.

These conditions are automatically satisfied if the Vm species has long maturation
time τv, a large immature mortality rate γv, insufficient live births or eggs laid
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per adult per unit time (this is what αv represents), or significant harvesting effort
among the immature species Vi, as measured by E3.

We obtained that E2 = αue−γuτu and E4 = αve−γvτv are thresholds of har-
vesting for the mature populations Um and Vm, respectively. We showed that there
exists a globally asymptotically stable equilibria for this model. That is, all pop-
ulations with positive initial functions tend to a constant population level. The
optimal harvest effort that maximize the sustainable yield and the corresponding
optimal population level are also determined.
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