Sagae-Tanabe Weighted Means and Reverse Inequalities

Eunkyung Ahn, Sejung Kim, Hosoo Lee and Yongdo Lim
Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea
e-mail: eunk0e@gmail.com, sejung@knu.ac.kr,
thislake@hanmail.com and ylim@knu.ac.kr

AbSTRACT. In this paper we consider weighted arithmetic and geometric means of several positive definite operators proposed by Sagae and Tanabe and we establish a reverse inequality of the arithmetic and geometric means via Specht ratio and the Thompson metric on the convex cone of positive definite operators.

1. Introduction

Let \mathcal{H} be a Hilbert space and let $\mathrm{P}(\mathcal{H})$ be the open convex cone of positive (invertible) operators on \mathcal{H}. The Thompson metric on $\mathrm{P}(\mathcal{H})$ is defined by

$$
d(A, B)=\max \{\log M(A / B), \log M(B / A)\}
$$

where $M(A / B):=\inf \{\lambda>0: A \leq \lambda B\}$. A. C. Thompson [15] has shown that $\mathrm{P}(\mathcal{H})$ is a complete metric space with respect to this metric and the corresponding metric topology agrees with the relative norm topology. For $A, B \in \mathrm{P}(\mathcal{H})$, the curve $t \mapsto A \#_{t} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}$ is regarded as a minimal geodesic line passing A and B, and $A \#_{1 / 2} B$ is known as the geometric mean of A and B. The nonpositive curvature property of the Thompson metric is equivalently stated [4], [9], [10]:

$$
\begin{equation*}
d\left(A \#_{t} B, C \#_{t} D\right) \leq(1-t) d(A, C)+t d(B, D), \quad t \in[0,1] \tag{1}
\end{equation*}
$$

For positive definite operators A and B, the weighted arithmetic and geometric mean inequality is well-known:

$$
A \#_{t} B \leq(1-t) A+t B, \quad t \in[0,1] .
$$

Its reverse inequality via Specht ratio is known as

$$
\begin{equation*}
(1-t) A+t B \leq S_{h} \cdot\left(A \#_{t} B\right) \tag{2}
\end{equation*}
$$

Received September 11, 2007.
2000 Mathematics Subject Classification: 15A64.
Key words and phrases: Sagae-Tanabe geometric mean, Thompson metric, Specht ratio, operator inequality.
where $S_{h}=\frac{(h-1) h^{(h-1)^{-1}}}{e \log h}$ and $h=e^{d(A, B)}$ for the Thompson metric d ([13], [2]).
In [14], Sagae and Tanabe proposed weighted arithmetic and geometric means of severable positive definite operators $A=\left(A_{1}, A_{2}, \cdots, A_{m}\right) \in P(\mathcal{H})^{m}$ from a fixed probability vector $\omega=\left(w_{1}, w_{2}, \cdots, w_{m}\right) \in R_{+}^{m}$, denoted by $A(\omega: A)$ and $G(\omega: A)$ respectively. The arithmetic-geometric inequality is derived: $G(\omega: A) \leq A(\omega: A)$. The main purpose of this paper is to establish a reverse inequality of the weighted arithmetic and geometric means of several positive definite operators via Specht ratio, extending the result (2) of two positive definite operators. A similar reverse inequalities for the higher order (weighted) geometric mean proposed by Ando-LiMathias [3], [11], [12] are established in [16], [8], [5].

2. Sagae and Tanabe weighted operator means

For $t \in R, A=\left(A_{1}, A_{2}, \cdots, A_{m}\right) \in \mathrm{P}(\mathcal{H})^{m}$ and invertible operator M on \mathcal{H}, we denote

$$
A^{t}=\left(A_{1}^{t}, A_{2}^{t}, \cdots, A_{m}^{t}\right), \quad M A M^{*}=\left(M A_{1} M^{*}, M A_{2} M^{*}, \cdots, M A_{m} M^{*}\right)
$$

Definition 2.1. Let $\omega=\left(w_{1}, w_{2}, \cdots, w_{m}\right) \in R_{+}^{m}$ be a probability vector: $w_{i}>0$ for all i and $\sum_{k=1}^{m} w_{k}=1$. Set for $k=1, \cdots, m-2$

$$
\omega^{(k)}=\frac{1-\sum_{i=k+1}^{m} w_{i}}{1-\sum_{i=k+2}^{m} w_{i}}=1-w_{k+1}\left(\sum_{i=1}^{k+1} w_{i}\right)^{-1}
$$

and $\omega^{(m-1)}=1-w_{m}$.

Remark 2.2.

(i) If $\omega=(1 / m, 1 / m, \cdots, 1 / m) \in R^{m}$, then $\omega^{(k)}=\frac{k}{k+1}$.
(ii) Set $\mu=\frac{1}{1-w_{m}}\left(w_{1}, w_{2}, \cdots, w_{m-1}\right) \in R^{m-1}$. Then for $1 \leq k \leq m-2$,

$$
\begin{equation*}
\mu^{(k)}=\omega^{(k)} \tag{3}
\end{equation*}
$$

from $\mu^{(k)}=1-\frac{w_{k+1}}{1-w_{m}}\left(\sum_{j=1}^{k+1} \frac{w_{j}}{1-w_{m}}\right)^{-1}=1-w_{k+1}\left(\sum_{j=1}^{k+1} w_{j}\right)^{-1}=\omega^{(k)}$.

Definition 2.3. The (Sagae-Tanabe) ω-weighted arithmetic, harmonic and geo-
metric means of positive definite operators $A=\left(A_{1}, A_{2}, \cdots, A_{m}\right)$ are defined by

$$
\begin{aligned}
\mathrm{A}(\omega: A) & :=\sum_{i=1}^{m} w_{i} A_{i}, \\
\mathrm{H}(\omega: A) & :=\left[\sum_{i=1}^{m} w_{i} A_{i}^{-1}\right]^{-1}, \\
G(\omega: A) & :=A_{m} \#_{\omega^{(m-1)}} A_{m-1} \#_{\omega^{(m-2)}} \cdots \#_{\omega^{(2)}} A_{2} \#_{\omega^{(1)}} A_{1},
\end{aligned}
$$

where we used the notation $A_{m} \#_{\alpha_{m-1}} A_{m-1} \#_{\alpha_{m-2}} \cdots A_{2} \#_{\alpha_{1}} A_{1}$ in the usual way:
$A_{m} \# \alpha_{\alpha_{m-1}} A_{m-1} \#_{\alpha_{m-2}} \cdots \#_{\alpha_{2}} A_{2} \#_{\alpha_{1}} A_{1}=A_{m} \# \alpha_{\alpha_{m-1}}\left(A_{m-1} \#_{\alpha_{m-2}} \cdots \#_{\alpha_{2}} A_{2} \#_{\alpha_{1}} A_{1}\right)$
although the geometric mean operation is not associative.
Proposition 2.4. We have

$$
\begin{aligned}
G(\omega: A)^{-1} & =G\left(\omega: A^{-1}\right) \\
G\left(\omega: M A M^{*}\right) & =M G(\omega: A) M^{*} \\
G(\omega: A) & \leq G(\omega: B) \text { if } A_{i} \leq B_{i},(i=1,2, \cdots, m) \\
H(\omega: A) & \leq G(\omega: A) \leq A(\omega: A)
\end{aligned}
$$

If A_{i} 's are mutually commutative then $G(\omega: A)=A_{1}^{w_{1}} A_{2}^{w_{2}} \cdots A_{m}^{w_{m}}$.
Proof. The invariancy under the inversion and congruence transformations and the monotone property follow from that of the geometric mean of two positive definite operators: $\left(A \#_{\alpha} B\right)^{-1}=A^{-1} \#_{\alpha} B^{-1}, M\left(A \#_{\alpha} B\right) M^{*}=\left(M A M^{*}\right) \#_{\alpha}\left(M B M^{*}\right)$, and $A \#_{\alpha} B \leq C \#_{\alpha} D$ when $A \leq C$ and $B \leq D$ (Löwner-Heinz inequality) for $\alpha \in[0,1]$. The weighted arithmetic-geometric-harmonic mean inequalities appear in [14].

3. A reverse inequality

For $h, s \geq 1$, the Specht ratio is defined by

$$
S_{h}(s):=\frac{\left(h^{s}-1\right) h^{s\left(h^{s}-1\right)^{-1}}}{e \log h^{s}}, \quad S_{h}:=S_{h}(1) .
$$

The maps $s \mapsto S_{h}(s)^{\frac{1}{s}}$ and $h \mapsto S_{h}$ are increasing functions for $s \geq 1$ and $h \geq 1$, respectively ([6], [8]). It then follows that

$$
\begin{equation*}
S_{h^{\rho}} \leq S_{h}^{\rho}, \quad 0<\rho \leq 1 \tag{4}
\end{equation*}
$$

Proposition 3.1. Let $B \in \mathrm{P}(\mathcal{H})$ and $A=\left(A_{1}, A_{2}, \cdots, A_{m}\right) \in \mathrm{P}(\mathcal{H})^{m}$. Then

$$
\begin{equation*}
d\left(B, A_{m} \#_{\alpha_{m-1}} A_{m-1} \#_{\alpha_{m-1}} \cdots \#_{\alpha_{2}} A_{2} \#_{\alpha_{1}} A_{1}\right) \leq \Delta\left(A_{1}, A_{2}, \cdots, A_{m}, B\right) \tag{5}
\end{equation*}
$$

for any $\alpha_{i} \in[0,1]$, where $\Delta\left(A_{1}, A_{2}, \cdots, A_{m}\right):=\max \left\{d\left(A_{i}, A_{j}\right): 1 \leq i, j \leq m\right\}$ denotes the diameter of $\left\{A_{1}, A_{2}, \cdots, A_{m}\right\}$ for the Thompson metric.
Proof. The proof follows by induction on m. By the nonpositive curvature property of the Thompson metric (1), we have

$$
\begin{aligned}
& d\left(B, A_{2} \#_{\alpha_{1}} A_{1}\right)=d\left(B \#_{\alpha_{1}} B, A_{2} \#_{\alpha_{1}} A_{1}\right) \\
\leq \quad & \left(1-\alpha_{1}\right) d\left(B, A_{2}\right)+\alpha_{1} d\left(B, A_{1}\right) \leq \Delta\left(A_{1}, A_{2}, B\right)
\end{aligned}
$$

Suppose that the inequality (5) holds for $m-1$. That is,

$$
\begin{equation*}
d\left(B, A_{m-1} \#_{\alpha_{m-2}} \cdots \#_{\alpha_{2}} A_{2} \#_{\alpha_{1}} A_{1}\right) \leq \Delta\left(A_{1}, A_{2}, \cdots, A_{m-1}, B\right) \tag{6}
\end{equation*}
$$

Setting $G=A_{m-1} \# \alpha_{\alpha_{m-2}} \cdots \#_{\alpha_{2}} A_{2} \#_{\alpha_{1}} A_{1}$, we have

$$
\begin{aligned}
& d\left(B, A_{m} \#_{\alpha_{m-1}} A_{m-1} \# \alpha_{m-2} \cdots \#_{\alpha_{2}} A_{2} \#_{\alpha_{1}} A_{1}\right) \\
= & d\left(B, A_{m} \#_{\alpha_{m-1}} G\right) \\
\leq & \left(1-\alpha_{m-1}\right) d\left(B, A_{m}\right)+\alpha_{m-1} d(B, G) \\
\leq & \Delta\left(A_{1}, A_{2}, \cdots, A_{m}, B\right) .
\end{aligned}
$$

Theorem 3.2. For $A=\left(A_{1}, A_{2}, \cdots, A_{m}\right) \in P(\mathcal{H})^{m}$ and $t \in[0,1]$,

$$
\begin{equation*}
A\left(\omega: A^{t}\right) \leq S_{h}^{(m-1) t} \cdot G\left(\omega: A^{t}\right) \tag{7}
\end{equation*}
$$

where $h=e^{\Delta(\mathbb{A})}$.
Proof. It is enough to show for $t=1$. Indeed, suppose that the inequality (7) holds true for $t=1$ and let $s \in[0,1]$. From the non-positive curvature property of the Thompson metric, we have

$$
d\left(A_{i}^{s}, A_{j}^{s}\right)=d\left(I \#_{s} A_{i}, I \#_{s} A_{j}\right) \leq(1-s) d(I, I)+s d\left(A_{i}, A_{j}\right)=s d\left(A_{i}, A_{j}\right)
$$

for all $1 \leq i, j \leq m$. This implies that $h_{s}:=e^{\Delta\left(A^{s}\right)} \leq e^{s \Delta(A)}=h^{s}$. It then follows from $S_{h_{s}} \leq S_{h^{s}} \stackrel{(4)}{\leq} S_{h}^{s}$ that

$$
A\left(\omega: A^{s}\right) \leq S_{h_{s}}^{m-1} \cdot G\left(\omega: A^{s}\right) \leq S_{h}^{(m-1) s} \cdot G\left(\omega: A^{s}\right)
$$

We prove by induction on m. If $m=2$, then $w_{1}=1-w_{2}$ and $\omega^{(1)}=1-w_{2}$ and hence
(8) $w_{1} A_{1}+w_{2} A_{2}=\left(1-w_{2}\right) A_{1}+w_{2} A_{2} \stackrel{(2)}{\leq} S_{h} \cdot\left(A_{2} \#_{\omega^{(1)}} A_{1}\right), h=e^{\Delta\left(A_{1}, A_{2}\right)}$.

Suppose that the assertion holds true for $m-1$. Let $\omega=\left(w_{1}, w_{2}, \cdots, w_{m}\right)$ be a probability vector. Set $\mu=\frac{1}{1-w_{m}}\left(w_{1}, w_{2}, \cdots, w_{m-1}\right)$. Then by Remark,
$\mu \in R^{m-1}$ is a probability vector with $\mu^{(j)}=\omega^{(j)}, j=1,2, \cdots, m-2$. It follows that by induction

$$
\begin{aligned}
\frac{1}{1-w_{m}} \sum_{k=1}^{m-1} w_{k} A_{k} & =A\left(\mu: A_{1}, A_{2}, \cdots, A_{m-1}\right) \\
& \leq S_{h^{\prime}}^{m-2} \cdot G\left(\mu: A_{1}, A_{2}, \cdots, A_{m-1}\right), \quad h^{\prime}=e^{\Delta\left(A_{1}, A_{2}, \cdots, A_{m-1}\right)} \\
& \leq S_{h}^{m-2} \cdot G\left(\mu: A_{1}, A_{2}, \cdots, A_{m-1}\right), \quad h=e^{\Delta\left(A_{1}, A_{2}, \cdots, A_{m}\right)}
\end{aligned}
$$

and therefore

\[

\]

Corollary 3.3. Let $\omega=\left(w_{1}, w_{2}, \cdots, w_{m}\right)$ be a probability vector and let $A=$ $\left(A_{1}, A_{2}, \cdots, A_{m}\right) \in \mathrm{P}(\mathcal{H})^{m}$. Then

$$
\left\langle A_{1} x, x\right\rangle^{w_{1}}\left\langle A_{2} x, x\right\rangle^{w_{2}} \cdots\left\langle A_{m} x, x\right\rangle^{w_{m}} \leq S_{h}^{m-1}\langle G(\omega: A) x, x\rangle, \quad h:=e^{\Delta(\mathbb{A})} .
$$

In particular,
$\left(\left\langle A_{1} x, x\right\rangle\left\langle A_{2} x, x\right\rangle \cdots\left\langle A_{m} x, x\right\rangle\right)^{\frac{1}{m}} \leq S_{h}^{m-1}\left\langle\left(A_{m} \#_{\frac{m-1}{m}} A_{m-1} \#_{\frac{m-2}{m-1}} \cdots \#_{\frac{2}{3}} A_{2} \#_{\frac{1}{2}} A_{1}\right) x, x\right\rangle$.

Proof. It follows from that

$$
\begin{aligned}
& \left\langle A_{1} x, x\right\rangle^{w_{1}}\left\langle A_{2} x, x\right\rangle^{w_{2}} \cdots\left\langle A_{m} x, x\right\rangle^{w_{m}} \\
\leq & w_{1}\left\langle A_{1} x, x\right\rangle+w_{2}\left\langle A_{2} x, x\right\rangle \cdots+w_{m}\left\langle A_{m} x, x\right\rangle \\
= & \langle A(\omega: A) x, x\rangle \\
(7) & S_{h}^{m-1}\langle G(\omega: A) x, x\rangle
\end{aligned}
$$

for all $x \in \mathcal{H}$.

Acknowledgment. This research was supported by Kyungpook National University Research Fund, 2007.

References

[1] E. Ahn, S. Kim and Y. Lim, An extended Lie-Trotter formula and its applications, Linear Algebra and Its Applications, 427(2007), 190-196.
[2] M. Alić, P. S. Bullen, J. Pećarić and V. Volenec, On the geometric-arithmetic mean inequality for matrices, Math Communication, 2(1997), 125-128.
[3] T. Ando, C. K. Li and R. Mathias, Geometic means, Linear Algebra and Appl., 385(2004), 305-334.
[4] G. Corach, H. Porta and L. Recht, Convexity of the geodesic distance on spaces of positive operators, Illinois J. Math., 38(1994), 87-94.
[5] J. I. Fujii, M. Fujii, M. Nakamura, J. Pećarić and Y. Seo, A reverse inequality for the weighted geometric mean due to Lawson-Lim, Linear Algebra and Appl., 427(2007), 272-284.
[6] J. I. Fujii, Y. Seo and M. Tominaga, Kantorovich type operator inequalities via the Specht ratio, Linear Algebra Appl., $\mathbf{3 7 7}$ (2004), 69-81.
[7] S. Kim, H. Lee and Y. Lim, A sharp converse inequality of three weighted arithmetic and geometric means of positive definite operators, to appear in Mathematical Inequalities and Applications.
[8] S. Kim and Y. Lim, A converse inequality of higher-order weighted arithmetic and geometric means of positive definite operators, Linear Algebra and Appl., 426(2007), 490-496.
[9] J. D. Lawson and Y. Lim, Symmetric spaces with convex metrics, Forum Math., 19(2007), 571-602.
[10] J. D. Lawson and Y. Lim, Metric convexity of symmetric cones, Osaka J. of Math., 44(2007), 1-22.
[11] J. D. Lawson and Y. Lim, A general framework for extending means to higher orders, submitted.
[12] J. D. Lawson and Y. Lim, Higher order weighted matrix means and related matrix inequalities, submitted.
[13] J. Pećarić, Power matrix means and related inequalities, Math. Commun., 1(1996), 91-112.
[14] M. Sagae and K. Tanabe, Upper and lower bounds for the arithmetic-geometricharmonic means of positive definite matrices, Linear and Multi-linear Algebras, 37(1994), 279-282.
[15] A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc., 14(1963), 438-443.
[16] T. Yamazaki, An extension of Kantorovich inequality to n-operators via the geometric mean by Ando-Li-Mathias, Linear Algebra Appl., 416(2006), 688-695.

