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Abstract. In this paper we consider weighted arithmetic and geometric means of several

positive definite operators proposed by Sagae and Tanabe and we establish a reverse in-

equality of the arithmetic and geometric means via Specht ratio and the Thompson metric

on the convex cone of positive definite operators.

1. Introduction

Let H be a Hilbert space and let P(H) be the open convex cone of positive
(invertible) operators on H. The Thompson metric on P(H) is defined by

d(A,B) = max{log M(A/B), log M(B/A)},

where M(A/B) := inf{λ > 0 : A ≤ λB}. A. C. Thompson [15] has shown that
P(H) is a complete metric space with respect to this metric and the corresponding
metric topology agrees with the relative norm topology. For A,B ∈ P(H), the
curve t 7→ A#tB := A1/2(A−1/2BA−1/2)tA1/2 is regarded as a minimal geodesic
line passing A and B, and A#1/2B is known as the geometric mean of A and B.
The nonpositive curvature property of the Thompson metric is equivalently stated
[4], [9], [10]:

d(A#tB,C#tD) ≤ (1− t)d(A,C) + td(B,D), t ∈ [0, 1].(1)

For positive definite operators A and B, the weighted arithmetic and geometric
mean inequality is well-known:

A#tB ≤ (1− t)A + tB, t ∈ [0, 1].

Its reverse inequality via Specht ratio is known as

(1− t)A + tB ≤ Sh · (A#tB),(2)
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where Sh = (h−1)h(h−1)−1

e log h and h = ed(A,B) for the Thompson metric d ([13], [2]).
In [14], Sagae and Tanabe proposed weighted arithmetic and geometric means

of severable positive definite operators A = (A1, A2, · · · , Am) ∈ P (H)m from a fixed
probability vector ω = (w1, w2, · · · , wm) ∈ Rm

+ , denoted by A(ω : A) and G(ω : A)
respectively. The arithmetic-geometric inequality is derived: G(ω : A) ≤ A(ω : A).
The main purpose of this paper is to establish a reverse inequality of the weighted
arithmetic and geometric means of several positive definite operators via Specht
ratio, extending the result (2) of two positive definite operators. A similar reverse
inequalities for the higher order (weighted) geometric mean proposed by Ando-Li-
Mathias [3], [11], [12] are established in [16], [8], [5].

2. Sagae and Tanabe weighted operator means

For t ∈ R,A = (A1, A2, · · · , Am) ∈ P(H)m and invertible operator M on H, we
denote

At = (At
1, A

t
2, · · · , At

m), MAM∗ = (MA1M
∗,MA2M

∗, · · · ,MAmM∗).

Definition 2.1. Let ω = (w1, w2, · · · , wm) ∈ Rm
+ be a probability vector: wi > 0

for all i and
∑m

k=1 wk = 1. Set for k = 1, · · · ,m− 2

ω(k) =
1−

∑m
i=k+1 wi

1−
∑m

i=k+2 wi
= 1− wk+1

(
k+1∑
i=1

wi

)−1

and ω(m−1) = 1− wm.

Remark 2.2.

(i) If ω = (1/m, 1/m, · · · , 1/m) ∈ Rm, then ω(k) =
k

k + 1
.

(ii) Set µ =
1

1− wm
(w1, w2, · · · , wm−1) ∈ Rm−1. Then for 1 ≤ k ≤ m− 2,

µ(k) = ω(k)(3)

from µ(k) = 1− wk+1
1−wm

(
k+1∑
j=1

wj

1−wm

)−1

= 1− wk+1

(
k+1∑
j=1

wj

)−1

= ω(k).

Definition 2.3. The (Sagae-Tanabe) ω-weighted arithmetic, harmonic and geo-
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metric means of positive definite operators A = (A1, A2, · · · , Am) are defined by

A(ω : A) :=
m∑

i=1

wiAi,

H(ω : A) :=

[
m∑

i=1

wiA
−1
i

]−1

,

G(ω : A) := Am#ω(m−1)Am−1#ω(m−2) · · ·#ω(2)A2#ω(1)A1,

where we used the notation Am#αm−1Am−1#αm−2 · · ·A2#α1A1 in the usual way:

Am#αm−1Am−1#αm−2 · · ·#α2A2#α1A1 = Am#αm−1

(
Am−1#αm−2 · · ·#α2A2#α1A1

)
although the geometric mean operation is not associative.

Proposition 2.4. We have

G(ω : A)−1 = G(ω : A−1),
G(ω : MAM∗) = MG(ω : A)M∗,

G(ω : A) ≤ G(ω : B) if Ai ≤ Bi, (i = 1, 2, · · · ,m),
H(ω : A) ≤ G(ω : A) ≤ A(ω : A).

If Ai’s are mutually commutative then G(ω : A) = Aw1
1 Aw2

2 · · ·Awm
m .

Proof. The invariancy under the inversion and congruence transformations and the
monotone property follow from that of the geometric mean of two positive definite
operators: (A#αB)−1 = A−1#αB−1,M(A#αB)M∗ = (MAM∗)#α(MBM∗), and
A#αB ≤ C#αD when A ≤ C and B ≤ D (Löwner-Heinz inequality) for α ∈ [0, 1].
The weighted arithmetic-geometric-harmonic mean inequalities appear in [14]. �

3. A reverse inequality

For h, s ≥ 1, the Specht ratio is defined by

Sh(s) :=
(hs − 1)hs(hs−1)−1

e log hs
, Sh := Sh(1).

The maps s 7→ Sh(s)
1
s and h 7→ Sh are increasing functions for s ≥ 1 and h ≥ 1,

respectively ([6], [8]). It then follows that

Shρ ≤ Sρ
h, 0 < ρ ≤ 1.(4)

Proposition 3.1. Let B ∈ P(H) and A = (A1, A2, · · · , Am) ∈ P(H)m. Then

(5) d(B,Am#αm−1Am−1#αm−1 · · ·#α2A2#α1A1) ≤ ∆(A1, A2, · · · , Am, B)
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for any αi ∈ [0, 1], where ∆(A1, A2, · · · , Am) := max{d(Ai, Aj) : 1 ≤ i, j ≤ m}
denotes the diameter of {A1, A2, · · · , Am} for the Thompson metric.

Proof. The proof follows by induction on m. By the nonpositive curvature property
of the Thompson metric (1), we have

d(B,A2#α1A1) = d(B#α1B,A2#α1A1)
≤ (1− α1)d(B,A2) + α1d(B,A1) ≤ ∆(A1, A2, B).

Suppose that the inequality (5) holds for m− 1. That is,

d(B,Am−1#αm−2 · · ·#α2A2#α1A1) ≤ ∆(A1, A2, · · · , Am−1, B).(6)

Setting G = Am−1#αm−2 · · ·#α2A2#α1A1, we have

d(B,Am#αm−1Am−1#αm−2 · · ·#α2A2#α1A1)
= d(B,Am#αm−1G)
≤ (1− αm−1)d(B,Am) + αm−1d(B,G)
≤ ∆(A1, A2, · · · , Am, B).

�

Theorem 3.2. For A = (A1, A2, · · · , Am) ∈ P (H)m and t ∈ [0, 1],

(7) A(ω : At) ≤ S
(m−1)t
h ·G(ω : At),

where h = e∆(A).

Proof. It is enough to show for t = 1. Indeed, suppose that the inequality (7) holds
true for t = 1 and let s ∈ [0, 1]. From the non-positive curvature property of the
Thompson metric, we have

d(As
i , A

s
j) = d(I#sAi, I#sAj) ≤ (1− s)d(I, I) + sd(Ai, Aj) = sd(Ai, Aj)

for all 1 ≤ i, j ≤ m. This implies that hs := e∆(As) ≤ es∆(A) = hs. It then follows

from Shs
≤ Shs

(4)

≤ Ss
h that

A(ω : As) ≤ Sm−1
hs

·G(ω : As) ≤ S
(m−1)s
h ·G(ω : As).

We prove by induction on m. If m = 2, then w1 = 1 − w2 and ω(1) = 1 − w2

and hence

w1A1 + w2A2 = (1− w2)A1 + w2A2

(2)

≤ Sh · (A2#ω(1)A1), h = e∆(A1,A2).(8)

Suppose that the assertion holds true for m − 1. Let ω = (w1, w2, · · · , wm)

be a probability vector. Set µ =
1

1− wm
(w1, w2, · · · , wm−1). Then by Remark ,
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µ ∈ Rm−1 is a probability vector with µ(j) = ω(j), j = 1, 2, · · · ,m − 2. It follows
that by induction

1
1− wm

m−1∑
k=1

wkAk = A(µ : A1, A2, · · · , Am−1)

≤ Sm−2
h′ ·G(µ : A1, A2, · · · , Am−1), h′ = e∆(A1,A2,··· ,Am−1)

≤ Sm−2
h ·G(µ : A1, A2, · · · , Am−1), h = e∆(A1,A2,··· ,Am)

and therefore

A(ω : A) =
m∑

k=1

wkAk = wmAm + (1− wm)
1

1− wm

m−1∑
k=1

wkAk

≤ wmAm + (1− wm)Sm−2
h ·G(µ : A1, A2, . . . , Am−1)

≤ Sm−2
h ·

(
wmAm + (1− wm)G(µ : A1, A2, . . . , Am−1)

)
(3)

≤ (Sm−2
h Sh′′) · (Am#ω(m−1)G(µ : A1, A2, . . . , Am−1))

h′′ := ed(Am,G(µ:A1,A2,··· ,Am−1))

= (Sm−2
h Sh′′) ·G(ω : A)

(5)

≤ (Sm−2
h Sh) ·G(µ : A) = Sm−1

h ·G(µ : A).

�

Corollary 3.3. Let ω = (w1, w2, · · · , wm) be a probability vector and let A =
(A1, A2, · · · , Am) ∈ P(H)m. Then

〈A1x, x〉w1〈A2x, x〉w2 · · · 〈Amx, x〉wm ≤ Sm−1
h 〈G(ω : A)x, x〉, h := e∆(A).

In particular,

(〈A1x, x〉〈A2x, x〉 · · · 〈Amx, x〉)
1
m ≤ Sm−1

h 〈(Am#m−1
m

Am−1#m−2
m−1

· · ·# 2
3
A2# 1

2
A1)x, x〉.

Proof. It follows from that

〈A1x, x〉w1〈A2x, x〉w2 · · · 〈Amx, x〉wm

≤ w1〈A1x, x〉+ w2〈A2x, x〉 · · ·+ wm〈Amx, x〉
= 〈A(ω : A)x, x〉
(7)

≤ Sm−1
h 〈G(ω : A)x, x〉

for all x ∈ H. �
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