KYUNGPOOK Math. J. 47(2007), 439-448

Entire Functions That Share One Value With Their Derivatives

FENG LÜ Department of Mathematics, Shandong University, Jinan, Shandong 250100, P. R. China e-mail: lvfeng@mail.sdu.edu.cn

JUNFENG XU Department of Mathematics, Shandong University, Jinan, Shandong 250100, P. R. China e-mail: xujunf@gmail.com

ABSTRACT. In the paper, we use the theory of normal family to study the problem on entire function that share a finite non-zero value with their derivatives and prove a uniqueness theorem which improve the result of J.P. Wang and H.X. Yi.

1. Introduction and main results

Let f and g be some non-constant meromorphic functions. We say f and g share a value b IM(CM) iff $f - b = 0 \Leftrightarrow g - b = 0(f - b = 0 \Rightarrow g - b = 0)$, ignoring multiplicities (counting multiplicities). We assume that the reader is familiar with fundamental results and the standard notations of the Nevanlinna theory([5],[9],[10]). In 1986, Lank, Muss and Volkmann proved the following result

In 1986, Jank, Mues and Volkmann proved the following result.

Theorem A. Let f be a nonconstant entire function. If f and f' share a finite, nonzero value a IM, and if f''(z) = a whenever f(z) = a, then $f \equiv f'$.

Remark 1. From the hypothesis of Theorem A, it can be easily seen that the value a is shared by f and f' CM. Theorem A suggests the following Question of Yi and Yang.

Question(see [9], [10]). Let f be a nonconstant meromorphic function, let a be a finite, nonzero constant, and let n and m(n < m) be positive integers. If f, $f^{(n)}$ and $f^{(m)}$ share a CM, where n and m are not both even or both odd, must $f \equiv f^{(n)}$?

An example ([7]) given by Yang shows that the answer to the above Question is,

Received July 10, 2006, and, in revised form, October 29, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 30D35, 30D45.

Key words and phrases: entire functions, uniqueness, Nevanlinna theory, normal family. This work was supported by Specialized Research Fund for the Doctoral Program of higher Education (No.20060422049).

⁴³⁹

in general, negative. Recently, related to the Question, Li and Yang ([4]) obtained the following theorem.

Theorem B. Let f be an entire function, let a be a finite nonzero value, and let $n(\geq 2)$ be a positive integer. If f, f', and $f^{(n)}$ share the value a CM, then f assumes the form $f(z) = be^{cz} + a - \frac{a}{c}$, where b, c are nonzero constants and $c^{n-1} = 1$.

In 2003, J. P. Wang and H. X. Yi ([6]) proved the next result.

Theorem C. Let f be a nonconstant entire function, let $a \neq 0$ be a constant, and $k \geq 2$ be a positive integer. If f and f' share a CM, and if $f^{(k)}(z) = a$ whenever f(z) = a, then f assumes the form $f(z) = Ae^{\lambda z} + a - \frac{a}{\lambda}$, where $A \neq 0$ and λ are constants satisfying $\lambda^{k-1} = 1$.

Remark 2. Under the hypothesis of Theorem C, we must have $f' \equiv f^{(k)}$. In Theorem C, if k = 2, then we have $\lambda = 1$ which implies $f \equiv f'$. So Theorem C contains Theorem A. Obviously, Theorem C has improved Theorem B.

It is natural to ask the following question: what can we say if CM is replaced by IM in Theorem C? In this paper, we use the theory of normal families to prove the following results.

Theorem 1. Let f be a nonconstant entire function, let $a \neq 0$ be a constant, and $k \geq 2$ be a positive integer. If f and f' share a IM, and $f^{(k)}(z) = a$ whenever f(z) = a, and if there exist $z_0 \in C$ satisfying $f^{(k)}(z_0) = f'(z_0) = b$, where $b \neq a$ is a constant, then f assumes the form $f(z) = Ae^{\lambda z} + a - \frac{a}{\lambda}$, where $A \neq 0$ and λ are constants satisfying $\lambda^{k-1} = 1$.

Corollary 1. Let f be a nonconstant entire function, let $a \neq 0$ be a constant, let $k \geq 2$ be a positive integer. If f and f' share a IM and $f'(z) = a \rightarrow f^{(k)}(z) = a$, then f assumes the form $f(z) = Ae^{\lambda z} + a - \frac{a}{\lambda}$, where $A \neq 0$ and λ are constants satisfying $\lambda^{k-1} = 1$.

Corollary 2. Let f be a nonconstant entire function, let $a \neq 0$ be a constant, let $k \geq 2$ be a positive integer. If $f(z) = a \Rightarrow f'(z) = a \Rightarrow |f^{(k)}(z)| \leq M$, M is a positive number, then $\frac{f'-a}{f-a} = c$, where c is a nonzero constant.

2. Some lemmas

Lemma 1([1]). Let ζ be a family of holomorphic functions in a domain D, let $k \geq 2$ be a positive integer, and let α be a function holomorphic in D, such that $\alpha(z) \neq 0$ for $z \in D$. If for every $f \in \zeta$, $f(z) = 0 \Rightarrow f'(z) = \alpha(z)$ and $f'(z) = \alpha(z) \Rightarrow$ $|f^{(k)}(z)| \leq h$, where h is a positive number, then ζ is normal in D.

Lemma 2([2]). Let f be an entire function and M be a positive number. If $f^{\sharp}(z) \leq$

M for any $z \in C$, then f is of exponential type. Here, as usual, $f^{\sharp}(z) = \frac{|f'(z)|}{1 + |f(z)|^2}$ is the spherical derivative.

Lemma 3([3]). Let ζ be a family of meromorphic functions in a domain D, then ζ is normal in D if and only if the spherical derivatives of functions $f \in \zeta$ are uniformly bounded on compact subsets of D.

Lemma 4([8]). Let Q(z) be a nonconstant polynomial. Then every solution F of the differential equation $F^{(k)} - e^{Q(z)}F = 1$ is an entire function of infinite order.

Using the same argument as in the proof of Lemma 4, we can prove the following lemma. We omit the details here.

Lemma 5. Let $P(z) \neq 0$ be a polynomial and Q(z) be a nonconstant polynomial. Then every solution F of the differential equation $F^{(k)} - P(z)e^{Q(z)}F = 1$ is an entire function of infinite order.

Lemma 6. Let f be a transcendental entire function with $\rho(f) \leq 1$. Let $k \geq 2$ be a positive integer. Let h be a positive number and a be a nonzero constant. If $f(z) = 0 \Rightarrow f'(z) = a, \quad f'(z) = a \Rightarrow |f^{(k)}(z)| \le h \text{ and } N(r, \frac{f}{f'-a}) = S(r, f), \text{ then } f(z) = 0$ $\frac{f'-a}{f} = c, \text{ where } c \text{ is a nonzero constant.}$

Proof. From $f(z) = 0 \Rightarrow f'(z) = a$, we get f(z) only has simple zeros. Let

(2.1)
$$\mu = \frac{f'-a}{f},$$

then μ is a entire function. Since f is a transcendental function, we get $\mu \neq 0$, then

$$T(r,\mu) = m(r,\mu) \le m(r,\frac{a}{f}) + S(r,f) \le T(r,f) + S(r,f).$$

From this we can get $\rho(\mu) \leq \rho(f) \leq 1$, where $\rho(f)$ denote the order of f.

$$N(r,\frac{1}{\mu}) = N(r,\frac{f}{f'-a}) = S(r,f) = O(\log r) \quad (r \not\in E).$$

Hence μ has finite zeros. We set $\mu = P(z)e^{bz}$, where P(z) is a polynomial and b is a constant. Form (2.1), we have

 $F' - P(z)e^{bz}F = 1.$

$$(2.2) f' - P(z)e^{bz}f = a.$$

Let $F = \frac{f}{a}$. Then (2.3)

If $b \neq 0$, by Lemma 5 we have the order of f is infinite, which is a contradiction. Thus we get b = 0 and

$$(2.4) f' = P(z)f + a,$$

it follows from (2.4) that

(2.5)
$$f^{(k)}(z) = P_1(z)f + P_2(z),$$

where $P_1(z)$ and $P_2(z)$ are polynomials, $\deg(P_1) = k \deg(P)$, $\deg(P_2) = (k - 1) \deg(P)$.

Case 1: If f has finite zeros, we can get f' - a also has finite zeros, therefore f is a polynomial, which is a contradiction.

Case 2: If f has infinite zeros $z_1, z_2, \cdots , z_n, \cdots$, and

$$|z_1| \le |z_2| \le \dots \le |z_n| \le \dots, |z_n| \to \infty (n \to \infty).$$

From (2.5), we have $f^{(k)}(z_n) = P_2(z_n)$. By $|f^{(k)}(z_n)| \le h$, we see that $P_2(z)$ is a constant, thus P(z) is a constant. Let P(z) = c, c is a nonzero constant. From (2.4), we obtain

$$\frac{f'-a}{f} = c.$$

This completes the proof of Lemma 6.

Lemma 7([1]). Let g be a nonconstant entire function with $\rho(g) \leq 1$; let $k \geq 2$ be an integer, and let a be a nonzero finite value. If $g(z) = 0 \Rightarrow g'(z) = a$, and $g'(z) = a \Rightarrow g^{(k)}(z) = 0$, then $g(z) = a(z - z_0)$, where z_0 is a constant.

Lemma 8([1]). There does not exist entire function f satisfying that

$$f(z) = \sum_{j=0}^{s} C_j \exp(w^j z),$$

where $w = \exp(2\pi i/k)$ and C_j are constants, and

$$f(z) = 0 \Leftrightarrow f'(z) = a.$$

Proof. From the proof of Lemma 7 in [1], we can get the conclusion.

3. Proof of theorem 1

From the assumption, we see that f is a transcendental entire function. Let us now show that f is of exponential type. Let F = f - a, then

$$F = 0 \Leftrightarrow F' = a \Rightarrow F^{(k)} = a.$$

Set $\zeta = \{F(z+w) : w \in C\}$, then ζ is a family of holomorphic functions on the unit disc \triangle . By the assumption, for any function g(z) = F(z+w), we have

$$g(z) = 0 \Leftrightarrow g'(z) = a \Rightarrow |g^{(k)}(z)| = |a|,$$

hence by Lemma 1, ζ is normal in \triangle . Thus by Lemma 3, there exist M > 0 satisfying $f^{\sharp}(z) \leq M$ for all $z \in C$. By Lemma 2, f is of exponential type. Then $\rho(f) = \rho(F) \leq 1$,

(3.1)
$$f(z) = a \Leftrightarrow f'(z) = a \Rightarrow f^{(k)}(z) = a.$$

We distinguish the following two cases.

Case 1. If f' - a has finite multiple zeros. We know that f and f' share a IM, so $\frac{f' - a}{f - a}$ have finite zeros, and f is a transcendental entire function, we derive that

$$N(r, \frac{F}{F'-a}) = N(r, \frac{f-a}{f'-a}) = S(r, f) = S(r, F).$$

Therefore by lemma 6, we get

$$\frac{f'-a}{f-a} = \frac{F'-a}{F} = c,$$

where c is a nonzero constant. Consequently, f and f' share a CM, we can get the conclusion by Theorem A.

Case 2. If f' - a has infinite multiple zeros. Then there exists

(3.2)
$$|a_1| \le |a_2| \le \dots \le |a_n| \le \dots, |a_n| \to \infty \quad (n \to \infty),$$

where a_n is the multiple *a*-point of f'. We claim:

(3.3)
$$|f^{(k+1)}(a_n)| \le M_1 \quad (n = 1, 2, 3, \cdots).$$

If the inequality (3.3) is not right, we suppose

(3.4)
$$|f^{(k+1)}(a_n)| = b_n \to \infty \quad (n \to \infty).$$

Let $g_n(z) = f(z + a_n)$, we know that ζ is normal in \triangle , we have $\{f(z + w) : w \in C\}$ is normal in \triangle . We see that

$$\{g_n\} \subset \{f(z+w) : w \in C\},\$$

thus we get $\{g_n\}$ is normal in \triangle , $\forall g_n \in \{g_n\}$ we have

$$g_n(0) = f(a_n) = a,$$

hence $\{g_n\}$ is uniformly bounded on compact subsets of \triangle . We can get $\{g_n^{(k)}\}$ is uniformly bounded in $|z| \leq \frac{1}{2}$. From this we get $\{g_n^{(k)}\}$ is normal in $|z| \leq \frac{1}{2}$, but by (3.3) and (3.4), we have

$$|g_n^{(k)\sharp}(0)| = \frac{|g_n^{(k+1)}(0)|}{1 + |g_n^{(k)}(0)|^2} = \frac{b_n}{1 + |a|^2} \to \infty,$$

which is a contradiction. Thus we prove the claim. Let

(3.5)
$$f(z) = a + a(z - a_n) + A_3(z - a_n)^3 + \cdots$$
 $(n = 1, 2, 3 \cdots).$

Then

(3.6)
$$f'(z) = a + 3A_3(z - a_n)^2 + \cdots$$
 $(n = 1, 2, 3 \cdots),$

(3.7)
$$f^{(k)}(z) = a + f^{(k+1)}(a_n)(z - a_n) + \cdots$$
 $(n = 1, 2, 3 \cdots).$

Let

(3.8)
$$\varphi = \frac{f^{(k)} - f'}{f - a}.$$

We also distinguish the following two cases.

Subcase 2.1. $\varphi \not\equiv 0$. From the assumption and (3.8), we get φ is a entire function and

$$T(r,\varphi) = m(r,\varphi) = S(r,f) = O(\log r) \quad (r \notin E).$$

Hence we can get φ is a polynomial.

From (3.5), (3.6), (3.7) and (3.8), we have

$$\varphi(a_n) = \frac{f^{(k)} - f'}{f - a}\Big|_{z = a_n} = \frac{1}{a}f^{(k+1)}(a_n),$$

hence

(3.9)
$$|\varphi(a_n)| = |\frac{1}{a}f^{(k+1)}(a_n)| \le M_1.$$

We know $\varphi(z)$ is a polynomial and $|a_n| \to \infty$ $(n \to \infty)$, from (3.9) we get φ is a nonzero constant. Let $\varphi = c$, thus we obtain

(3.10)
$$f^{(k)} = f' + c(f - a) \quad (c \neq 0).$$

By the assumption, we substitute z_0 into (3.10) and get a contradiction.

Subcase 2.2. $\varphi \equiv 0$, then we get

(3.11)
$$f^{(k)} = f'$$

In the following we deal with the equation (3.11) in the similar way of Lemma 7. By (3.11), we have

(3.12)
$$f(z) = \sum_{j=0}^{k-2} C_j \exp(w^j z) + D,$$

where $w = \exp(2\pi i/k - 1)$ and C_j and D are constants.

Since f is transcendental, there exists C_j such that $C_j \neq 0$. We denote the nonzero constants in C_j by $C_{j_m} (0 \leq j_m \leq k-2, m=0, 1, \dots, s, s \leq k-2)$. Thus we have

(3.13)
$$f(z) = \sum_{m=0}^{s} C_{j_m} \exp(w^{j_m} z) + D,$$

Let $z_n = r_n e^{i\theta_n}$, where $0 \le \theta_n < 2\pi$. Without loss of generality, we may assume that $\theta_n \to \theta_0$ as $n \to \infty$. Let

(3.14)
$$L = \max_{0 \le m \le s} \cos(\theta_0 + \frac{2j_m \pi}{k - 1}).$$

Then, either there exists an index m_0 such that $\cos(\theta_0 + \frac{2j_{m_0}\pi}{k-1}) = L$ or there exist two indices $m_1, m_2(m_1 \neq m_2)$ such that $\cos(\theta_0 + \frac{2j_{m_1}\pi}{k-1}) = \cos(\theta_0 + \frac{2j_{m_2}\pi}{k-1}) = L$. We consider these cases separately.

Case 2.2.1. There exists an index m_0 such that

$$\cos(\theta_0 + \frac{2j_{m_0}\pi}{k-1}) = L > \cos(\theta_0 + \frac{2j_m\pi}{k-1}),$$

for $m \neq m_0$. Then there exists $\delta > 0$ such that for n sufficiently large,

(3.15)
$$\cos(\theta_0 + \frac{2j_{m_0}\pi}{k-1}) - \cos(\theta_0 + \frac{2j_m\pi}{k-1}) \ge \delta, \text{ for } m \ne m_0.$$

We differentiate (3.13) twice and get

(3.16)
$$f'' = \sum_{m=0}^{s} C_{j_m} (w^{j_m})^2 \exp(w^{j_m} z).$$

Since $f''(z_n) = 0$, we have

(3.17)
$$(w^{j_{m_0}})^2 C_{j_{m_0}} + \sum_{m \neq m_0} C_{j_m} (w^{j_m})^2 \exp(w^{j_m} z_n - w^{j_{m_0}} z_n) = 0.$$

445

By (3.15), we have

$$\begin{aligned} |\exp(w^{j_m} z_n - w^{j_m_0} z_n)| &= \exp\left\{ r_n \left(\cos(\theta_0 + \frac{2j_m \pi}{k-1}) - \cos(\theta_0 + \frac{2j_{j_m_0} \pi}{k-1}) \right) \right\} \\ &\leq e^{-\delta r_n} \to 0 \quad (n \to \infty). \end{aligned}$$

Thus we obtain $C_{j_{m_0}} = 0$, which contradicts our assumption.

Case 2.2.2. There exist two indices $m_1, m_2(m_1 \neq m_2)$ such that

(3.18)
$$\cos(\theta_0 + \frac{2j_{m_1}\pi}{k-1}) = \cos(\theta_0 + \frac{2j_{m_2}\pi}{k-1}) = L > \cos(\theta_0 + \frac{2j_m\pi}{k-1}),$$

for $m \neq m_1, m_2$. Then there exists a $\delta > 0$ such that for n sufficiently large,

(3.19)
$$\cos(\theta_0 + \frac{2j_{m_i}\pi}{k-1}) - \cos(\theta_0 + \frac{2j_m\pi}{k-1}) \ge \delta$$
, for $(m \ne m_1, m_2)$ $(i = 1, 2)$.

Since
$$f(z_n) = a$$
, $f'(z_n) = a$ and $f''(z_n) = 0$, we have

$$(3.20) \ C_{j_{m_1}} \exp(w^{j_{m_1}} z_n) + C_{j_{m_2}} \exp(w^{j_{m_2}} z_n) + \sum_{m \neq m_1, m_2} C_{j_m} \exp(w^{j_m} z_n) + D = a,$$

and

(3.21)
$$C_{j_{m_1}} w^{j_{m_1}} \exp(w^{j_{m_1}} z_n) + C_{j_{m_2}} w^{j_{m_2}} \exp(w^{j_{m_2}} z_n) + \sum_{m \neq m_1, m_2} C_{j_m} w^{j_m} \exp(w^{j_m} z_n) = a,$$

(3.22)
$$C_{j_{m_1}}(w^{j_{m_1}})^2 \exp(w^{j_{m_1}}z_n) + C_{j_{m_2}}(w^{j_{m_2}})^2 \exp(w^{j_{m_2}}z_n) + \sum_{m \neq m_1, m_2} C_{j_m}(w^{j_m})^2 \exp(w^{j_m}z_n) = 0.$$

Thus we get

(3.23)
$$C_{jm_1}w^{jm_1}(w^{jm_1} - w^{jm_2})\exp(w^{jm_1}z_n) + \sum_{m \neq m_1, m_2} C_{jm}w^{jm}(w^{jm} - w^{jm_2})\exp(w^{jm}z_n) = aw^{jm_2}.$$

Using the same argument as that used in proving $C_{j_{m_0}} = 0$ above and the fact that $w^j \neq w^l (j \neq l, 0 \leq j, l \leq k - 2)$, we obtain

(3.24)
$$\exp(w^{jm_1}z_n) \to c_0, \quad (n \to \infty),$$

where $c_0 \neq 0$ is a constant.

446

It follows that

(3.25)
$$\cos(\theta_0 + \frac{2j_{m_1}\pi}{k-1}) = \lim_{n \to \infty} \cos(\theta_n + \frac{2j_{m_1}\pi}{k-1}) = 0.$$

Similarly, we get

$$\cos(\theta_0 + \frac{2j_{m_2}\pi}{k-1}) = 0.$$

Thus we have

(3.26)
$$\left| \frac{2j_{m_1}\pi}{k-1} - \frac{2j_{m_2}\pi}{k-1} \right| = \pi \text{ and } w^{j_{m_2}} = -w^{j_{m_1}}.$$

From (3.20), (3.22), (3.25) and (3.26), we can get D=a . Let

(3.27)
$$g = \sum_{j=0}^{s} C_j exp(w^j z),$$

then

$$(3.28) g = 0 \Leftrightarrow g' = a.$$

From Lemma 8 and (3.27)-(3.28), we can get a contradiction.

Thus we complete the proof of Theorem 1.

In the similar way, we can prove the Corollary 1 and Corollary 2.

Acknowledgment. The authors would like to thank the referee for valuable suggestions, and to thank Professor Hong-xun Yi for his encouragement.

References

- J. M. Chang and M. L. Fang and L. Zalcman, Normal families of holomorphic functions, Illinois Journsl of Mathematics, 48(2004), 319-337.
- [2] J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv., 40(1966), 117-148.
- [3] J. Schiff, Normal families, Springer (1993).
- [4] P. Li and C. C. Yang, Uniqueness theorems on entire functions and their derivatives, J. Math. Anal. Appl., 253(2001) 50-57.
- [5] W. K. Hayman, Meromorphic functions, The Clarendon Press, Oxford, 1964.
- [6] J. P. Wang and H. X. Yi, Entire functions that share one value CM with theri derivates, J. Math. Anal. Appl., 277(2003), 155-163.

- [7] L. Z. Yang, Further results on entire functions that share one value with their derivatives, J. Math. Anal. Appl., 212(1997), 529-536.
- [8] L. Z. Yang, Solution of a differential equation and its applications, Kodai. Math. J., 12(1999), 458-464.
- [9] H. X. Yi and C. C. Yang, Uniqueness theory of meromorphic functions, Science Press, Beijing, 1995.
- [10] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers, 2003.