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Abstract. In the paper, we use the theory of normal family to study the problem on

entire function that share a finite non-zero value with their derivatives and prove a unique-

ness theorem which improve the result of J.P. Wang and H.X. Yi.

1. Introduction and main results

Let f and g be some non-constant meromorphic functions. We say f and g share
a value b IM(CM) iff f − b = 0 ⇔ g− b = 0(f − b = 0 
 g− b = 0), ignoring multi-
plicities (counting multiplicities). We assume that the reader is familiar with fun-
damental results and the standard notations of the Nevanlinna theory([5],[9],[10]).

In 1986, Jank, Mues and Volkmann proved the following result.

Theorem A. Let f be a nonconstant entire function. If f and f ′ share a finite,
nonzero value a IM, and if f ′′(z) = a whenever f(z) = a, then f ≡ f ′.

Remark 1. From the hypothesis of Theorem A, it can be easily seen that the value
a is shared by f and f ′ CM. Theorem A suggests the following Question of Yi and
Yang.

Question(see [9], [10]). Let f be a nonconstant meromorphic function, let a be
a finite, nonzero constant, and let n and m(n < m) be positive integers. If f ,
f (n) and f (m) share a CM, where n and m are not both even or both odd, must
f ≡ f (n)?

An example ([7]) given by Yang shows that the answer to the above Question is,
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in general, negative. Recently, related to the Question, Li and Yang ([4]) obtained
the following theorem.

Theorem B. Let f be an entire function, let a be a finite nonzero value, and let
n(≥ 2) be a positive integer. If f , f ′, and f (n) share the value a CM, then f assumes
the form f(z) = becz + a− a

c
, where b, c are nonzero constants and cn−1 = 1.

In 2003, J. P. Wang and H. X. Yi ([6]) proved the next result.

Theorem C. Let f be a nonconstant entire function, let a(6= 0)be a constant, and
k(≥ 2) be a positive integer. If f and f ′ share a CM, and if f (k)(z) = a whenever
f(z) = a, then f assumes the form f(z) = Aeλz + a− a

λ
, where A( 6= 0) and λ are

constants satisfying λk−1 = 1.

Remark 2. Under the hypothesis of Theorem C, we must have f ′ ≡ f (k). In
Theorem C, if k = 2, then we have λ = 1 which implies f ≡ f ′. So Theorem C
contains Theorem A. Obviously, Theorem C has improved Theorem B.

It is natural to ask the following question: what can we say if CM is replaced
by IM in Theorem C? In this paper, we use the theory of normal families to prove
the following results.

Theorem 1. Let f be a nonconstant entire function, let a(6= 0)be a constant, and
k(≥ 2) be a positive integer. If f and f ′ share a IM, and f (k)(z) = a whenever
f(z) = a, and if there exist z0 ∈ C satisfying f (k)(zo) = f ′(zo) = b, where b 6= a is
a constant, then f assumes the form f(z) = Aeλz + a− a

λ
, where A( 6= 0) and λ are

constants satisfying λk−1 = 1.

Corollary 1. Let f be a nonconstant entire function, let a(6= 0) be a constant, let
k ≥ 2 be a positive integer. If f and f ′ share a IM and f ′(z) = a → f (k)(z) = a,
then f assumes the form f(z) = Aeλz + a− a

λ
, where A(6= 0) and λ are constants

satisfying λk−1 = 1.

Corollary 2. Let f be a nonconstant entire function, let a(6= 0) be a constant, let
k ≥ 2 be a positive integer. If f(z) = a 
 f ′(z) = a ⇒ |f (k)(z)| ≤ M , M is a

positive number, then
f ′ − a

f − a
= c, where c is a nonzero constant.

2. Some lemmas

Lemma 1([1]). Let ζ be a family of holomorphic functions in a domain D, let k ≥ 2
be a positive integer, and let α be a function holomorphic in D, such that α(z) 6= 0
for z ∈ D. If for every f ∈ ζ, f(z) = 0 ⇒ f ′(z) = α(z) and f ′(z) = α(z) ⇒
|f (k)(z)| ≤ h, where h is a positive number, then ζ is normal in D.

Lemma 2([2]). Let f be an entire function and M be a positive number. If f ](z) ≤
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M for any z ∈ C, then f is of exponential type.

Here, as usual, f ](z) =
|f ′(z)|

1 + |f(z)|2
is the spherical derivative.

Lemma 3([3]). Let ζ be a family of meromorphic functions in a domain D, then
ζ is normal in D if and only if the spherical derivatives of functions f ∈ ζ are
uniformly bounded on compact subsets of D.

Lemma 4([8]). Let Q(z) be a nonconstant polynomial. Then every solution F of
the differential equation F (k) − eQ(z)F = 1 is an entire function of infinite order.

Using the same argument as in the proof of Lemma 4, we can prove the following
lemma. We omit the details here.

Lemma 5. Let P (z)(6≡ 0) be a polynomial and Q(z)be a nonconstant polynomial.
Then every solution F of the differential equation F (k) − P (z)eQ(z)F = 1 is an
entire function of infinite order.

Lemma 6. Let f be a transcendental entire function with ρ(f) ≤ 1. Let k ≥ 2
be a positive integer. Let h be a positive number and a be a nonzero constant. If

f(z) = 0 ⇒ f ′(z) = a, f ′(z) = a ⇒ |f (k)(z)| ≤ h and N(r,
f

f ′ − a
) = S(r, f), then

f ′ − a

f
= c, where c is a nonzero constant.

Proof. From f(z) = 0 ⇒ f ′(z) = a, we get f(z) only has simple zeros. Let

(2.1) µ =
f ′ − a

f
,

then µ is a entire function. Since f is a transcendental function, we get µ 6≡ 0, then

T (r, µ) = m(r, µ) ≤ m(r,
a

f
) + S(r, f) ≤ T (r, f) + S(r, f).

From this we can get ρ(µ) ≤ ρ(f) ≤ 1, where ρ(f) denote the order of f .

N(r,
1
µ

) = N(r,
f

f ′ − a
) = S(r, f) = O(log r) (r 6∈ E).

Hence µ has finite zeros. We set µ = P (z)ebz, where P (z) is a polynomial and b is
a constant. Form (2.1), we have

(2.2) f ′ − P (z)ebzf = a.

Let F =
f

a
. Then

(2.3) F ′ − P (z)ebzF = 1.
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If b 6= 0, by Lemma 5 we have the order of f is infinite, which is a contradiction.
Thus we get b = 0 and

(2.4) f ′ = P (z)f + a,

it follows from (2.4) that

(2.5) f (k)(z) = P1(z)f + P2(z),

where P1(z) and P2(z) are polynomials, deg(P1) = k deg(P ), deg(P2) = (k −
1) deg(P ).

Case 1 : If f has finite zeros, we can get f ′ − a also has finite zeros, therefore f
is a polynomial, which is a contradiction.

Case 2 : If f has infinite zeros z1, z2, · · · zn, · · · , and

|z1| ≤ |z2| ≤ · · · ≤ |zn| ≤ · · · , |zn| → ∞(n →∞).

From (2.5), we have f (k)(zn) = P2(zn). By |f (k)(zn)| ≤ h , we see that P2(z) is
a constant, thus P (z) is a constant. Let P (z) = c, c is a nonzero constant. From
(2.4), we obtain

f ′ − a

f
= c.

This completes the proof of Lemma 6. �

Lemma 7([1]). Let g be a nonconstant entire function with ρ(g) ≤ 1; let k ≥ 2
be an integer, and let a be a nonzero finite value. If g(z) = 0 ⇒ g′(z) = a, and
g′(z) = a ⇒ g(k)(z) = 0, then g(z) = a(z − z0), where z0 is a constant.

Lemma 8([1]). There does not exist entire function f satisfying that

f(z) =
s∑

j=0

Cj exp(wjz),

where w = exp(2πi/k) and Cj are constants, and

f(z) = 0 ⇔ f ′(z) = a.

Proof. From the proof of Lemma 7 in [1], we can get the conclusion. �

3. Proof of theorem 1

From the assumption, we see that f is a transcendental entire function. Let us
now show that f is of exponential type. Let F = f − a, then

F = 0 ⇔ F ′ = a ⇒ F (k) = a.
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Set ζ = {F (z + w) : w ∈ C}, then ζ is a family of holomorphic functions on the
unit disc 4. By the assumption, for any function g(z) = F (z + w), we have

g(z) = 0 ⇔ g′(z) = a ⇒ |g(k)(z)| = |a|,

hence by Lemma 1, ζ is normal in 4. Thus by Lemma 3, there exist M > 0
satisfying f ](z) ≤ M for all z ∈ C. By Lemma 2, f is of exponential type. Then
ρ(f) = ρ(F ) ≤ 1,

(3.1) f(z) = a ⇔ f ′(z) = a ⇒ f (k)(z) = a.

We distinguish the following two cases.

Case 1. If f ′ − a has finite multiple zeros. We know that f and f ′ share a IM,

so
f ′ − a

f − a
have finite zeros, and f is a transcendental entire function, we derive that

N(r,
F

F ′ − a
) = N(r,

f − a

f ′ − a
) = S(r, f) = S(r, F ).

Therefore by lemma 6, we get

f ′ − a

f − a
=

F ′ − a

F
= c,

where c is a nonzero constant. Consequently, f and f ′ share a CM, we can get the
conclusion by Theorem A.

Case 2. If f ′ − a has infinite multiple zeros. Then there exists

(3.2) |a1| ≤ |a2| ≤ · · · ≤ |an| ≤ · · · , |an| → ∞ (n →∞),

where an is the multiple a-point of f ′. We claim:

(3.3) |f (k+1)(an)| ≤ M1 (n = 1, 2, 3, · · · ).

If the inequality (3.3) is not right, we suppose

(3.4) |f (k+1)(an)| = bn →∞ (n →∞).

Let gn(z) = f(z + an), we know that ζ is normal in 4, we have {f(z + w) : w ∈ C}
is normal in 4. We see that

{gn} ⊂ {f(z + w) : w ∈ C},

thus we get {gn} is normal in 4, ∀ gn ∈ {gn} we have

gn(0) = f(an) = a,
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hence {gn} is uniformly bounded on compact subsets of 4. We can get {g(k)
n } is

uniformly bounded in |z| ≤ 1
2
. From this we get {g(k)

n } is normal in |z| ≤ 1
2
, but by

(3.3) and (3.4), we have

|g(k)]
n (0)| = |g(k+1)

n (0)|
1 + |g(k)

n (0)|2
=

bn

1 + |a|2
→∞,

which is a contradiction. Thus we prove the claim.
Let

(3.5) f(z) = a + a(z − an) + A3(z − an)3 + · · · (n = 1, 2, 3 · · · ).

Then

(3.6) f ′(z) = a + 3A3(z − an)2 + · · · (n = 1, 2, 3 · · · ),

(3.7) f (k)(z) = a + f (k+1)(an)(z − an) + · · · (n = 1, 2, 3 · · · ).

Let

(3.8) ϕ =
f (k) − f ′

f − a
.

We also distinguish the following two cases.

Subcase 2.1. ϕ 6≡ 0. From the assumption and (3.8), we get ϕ is a entire function
and

T (r, ϕ) = m(r, ϕ) = S(r, f) = O(log r) (r 6∈ E).

Hence we can get ϕ is a polynomial.
From (3.5),(3.6),(3.7) and (3.8), we have

ϕ(an) =
f (k) − f ′

f − a

∣∣∣∣
z=an

=
1
a
f (k+1)(an),

hence

(3.9) |ϕ(an)| = |1
a
f (k+1)(an)| ≤ M1.

We know ϕ(z) is a polynomial and |an| → ∞ (n → ∞), from (3.9) we get ϕ is a
nonzero constant. Let ϕ = c, thus we obtain

(3.10) f (k) = f ′ + c(f − a) (c 6= 0).

By the assumption, we substitute z0 into (3.10) and get a contradiction.
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Subcase 2.2. ϕ ≡ 0, then we get

(3.11) f (k) = f ′.

In the following we deal with the equation (3.11) in the similar way of Lemma 7.
By (3.11), we have

(3.12) f(z) =
k−2∑
j=0

Cj exp(wjz) + D,

where w = exp(2πi/k − 1) and Cj and D are constants.
Since f is transcendental, there exists Cj such that Cj 6= 0. We denote the

nonzero constants in Cj by Cjm
(0 ≤ jm ≤ k− 2,m = 0, 1, · · · s, s ≤ k− 2). Thus we

have

(3.13) f(z) =
s∑

m=0

Cjm
exp(wjmz) + D,

Let zn = rneiθn , where 0 ≤ θn < 2π. Without loss of generality, we may assume
that θn → θ0 as n →∞. Let

(3.14) L = max
0≤m≤s

cos(θ0 +
2jmπ

k − 1
).

Then, either there exists an index m0 such that cos(θ0 +
2jm0π

k − 1
) = L or there exist

two indices m1,m2(m1 6= m2) such that cos(θ0 +
2jm1π

k − 1
) = cos(θ0 +

2jm2π

k − 1
) = L.

We consider these cases separately.

Case 2.2.1. There exists an index m0 such that

cos(θ0 +
2jm0π

k − 1
) = L > cos(θ0 +

2jmπ

k − 1
),

for m 6= m0. Then there exists δ > 0 such that for n sufficiently large,

(3.15) cos(θ0 +
2jm0π

k − 1
)− cos(θ0 +

2jmπ

k − 1
) ≥ δ, for m 6= m0.

We differentiate (3.13) twice and get

(3.16) f ′′ =
s∑

m=0

Cjm(wjm)2 exp(wjmz).

Since f ′′(zn) = 0, we have

(3.17) (wjm0 )2Cjm0
+

∑
m6=m0

Cjm(wjm)2 exp(wjmzn − wjm0 zn) = 0.
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By (3.15), we have

| exp(wjmzn − wjm0 zn)| = exp
{

rn

(
cos(θ0 +

2jmπ

k − 1
)− cos(θ0 +

2jjm0
π

k − 1
)
)}

≤ e−δrn → 0 (n →∞).

Thus we obtain Cjm0
= 0, which contradicts our assumption.

Case 2.2.2. There exist two indices m1,m2(m1 6= m2) such that

(3.18) cos(θ0 +
2jm1π

k − 1
) = cos(θ0 +

2jm2π

k − 1
) = L > cos(θ0 +

2jmπ

k − 1
),

for m 6= m1,m2. Then there exists a δ > 0 such that for n sufficiently large,

(3.19) cos(θ0 +
2jmi

π

k − 1
)− cos(θ0 +

2jmπ

k − 1
) ≥ δ, for (m 6= m1,m2) (i = 1, 2).

Since f(zn) = a, f ′(zn) = a and f ′′(zn) = 0, we have

(3.20) Cjm1
exp(wjm1 zn)+Cjm2

exp(wjm2 zn)+
∑

m6=m1,m2

Cjm exp(wjmzn)+D = a,

and

Cjm1
wjm1 exp(wjm1 zn) + Cjm2

wjm2 exp(wjm2 zn)(3.21)

+
∑

m6=m1,m2

Cjm
wjm exp(wjmzn) = a,

Cjm1
(wjm1 )2 exp(wjm1 zn) + Cjm2

(wjm2 )2 exp(wjm2 zn)(3.22)

+
∑

m6=m1,m2

Cjm(wjm)2 exp(wjmzn) = 0.

Thus we get

Cjm1
wjm1 (wjm1 − wjm2 ) exp(wjm1 zn)(3.23)

+
∑

m6=m1,m2

Cjm
wjm(wjm − wjm2) exp(wjmzn) = awjm2 .

Using the same argument as that used in proving Cjm0
= 0 above and the fact that

wj 6= wl(j 6= l, 0 ≤ j, l ≤ k − 2), we obtain

(3.24) exp(wjm1 zn) → c0, (n →∞),

where c0 6= 0 is a constant.
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It follows that

(3.25) cos(θ0 +
2jm1π

k − 1
) = lim

n→∞
cos(θn +

2jm1π

k − 1
) = 0.

Similarly, we get

cos(θ0 +
2jm2π

k − 1
) = 0.

Thus we have

(3.26)
∣∣∣∣2jm1π

k − 1
− 2jm2π

k − 1

∣∣∣∣ = π and wjm2 = −wjm1 .

From (3.20), (3.22), (3.25) and (3.26), we can get D = a .
Let

(3.27) g =
s∑

j=0

Cjexp(wjz),

then

(3.28) g = 0 ⇔ g′ = a.

From Lemma 8 and (3.27)-(3.28), we can get a contradiction.
Thus we complete the proof of Theorem 1.
In the similar way, we can prove the Corollary 1 and Corollary 2.
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