
KYUNGPOOK Math. J. 47(2007), 393-401

On Subclasses of P-Valent Analytic Functions Defined by In-
tegral Operators

Rasoul Aghalary
Department of Mathematics, University of Urmia, Urmia, Iran
e-mail : raghalary@yahoo.com

Abstract. In the present paper we introduce the subclass Sλ
a,c(p, A, B) of analytic func-

tions and then we investigate some interesting properties of functions belonging to this

subclass. Our results generalize many results known in the literature and especially gen-

eralize some of the results obtained by Ling and Liu [5].

1. Introduction

Let Ap denote the class of functions

(1.1) f(z) = zp +
∞∑

k=1

akz
k+p (p ∈ N = {1, 2, 3, · · · }),

which are analytic and p-valent in the open unit disc U = {z : z ∈ C and |z| < 1}.
Set A1 = A. For −1 ≤ B < A ≤ 1 the function f ∈ Ap is said to be in the class
S∗p(A,B), if

(1.2)
zf ′(z)
f(z)

≺ p
1 +Az

1 +Bz
,

where the symbol “ ≺ ” stands for subordination. In particular, we note that

S∗p(1− 2α
p
,−1) := S∗p(α), (0 ≤ α < p) is the class of p-valently starlike functions of

order α. Also let Cp(A,B) denote the subclass of Ap consisting of all functions f

such that zf ′(z) ∈ S∗p(A,B). In particular, a function in the class Cp(1− 2α
p
,−1) :=

Cp(α), (0 ≤ α < p) is said to be p-valently convex function of order α. Furthermore
a function f ∈ Ap is said to be in the class ρp(A,B), (−1 ≤ B < A ≤ 1), if

zp

(1− z)p(A−B)
∗ f(z) ∈ S∗p(A,B), z ∈ U,

where “ ∗ ” denote the Hadamard product (or convolution).
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Set ρ1(1 − 2α
p
,−1) = ρ(α), (0 ≤ α < 1). Class ρ(α) is called the class of

prestarlike functions of order α. In [8], it is shown ρ(α) ⊂ ρ(β) for α ≤ β ≤ 1. For
real or complex numbers a, b, c(c 6= 0,−1,−2, · · · ), the hypergeometric function is
defined by

(1.3) 2F1(a, b; c; z) = 1 +
a.b

c

z

1!
+
a(a+ 1).b(b+ 1)

c(c+ 1)
.
z2

2!
+ · · · = 1 +

∞∑
k=0

(a)k(b)k

(c)k

zk

k!
,

where (a)n is the Pochhammer symbol defined by

(a)n :=
Γ(a+ n)

Γ(a)
=

{
1, (n = 0);
a(a+ 1)(a+ 2) . . . (a+ n− 1), (n ∈ N := {1, 2, 3 . . .}).

We note that the series in (1.3) converges absolutely for z ∈ U and hence represents
an analytic function in U.

Making use of the Hadamard product (or convolution ), we define the linear
operator  Lp(a, c)f(z) : Ap 7→ Ap by

(1.4)  LP (a, c)f(z) := φp(a, c; z) ∗ f(z) (f ∈ Ap),

where

(1.5) φp(a, c; z) = zp
2F1(a, 1; c; z) =

∞∑
k=0

(a)k

(c)k
zk+p,

(z ∈ U; a ∈ R; c ∈ R− Z−
0 ; Z−

0 = {0,−1,−2,−3, · · · })

The operator  Lp(a, c) was introduced and studied by Saitoh [10]. This operator is an
extension of the Carlson-Shaffer operator  L1(a, c) and familiar fractional derivative
operator Dλ

z .
Corresponding to the function φp(a, c; z) defined by (1.5), we introduce a func-

tion φλ
p(a, c; z) given by

φp(a, c; z) ∗ φλ
p(a, c; z) =

zp

(1− z)λ+p
(λ > −p),

which leads us to the following family of linear operators τλ
p (a, c):

(1.6) τλ
p (a, c)f(z) = φλ

p(a, c; z) ∗ f(z)

(a, c ∈ R− Z−
0 ;λ > −p; z ∈ U; f ∈ Ap).

It is readily verified from the definition (1.6) that

(1.7) τ1
p (p+ 1, 1)f(z) = f(z) τ1

p (p, 1)f(z) =
zf ′(z)
p
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(1.8) z(τλ
p (a+ 1, c)f(z))′ = aτλ

p (a, c)f(z)− (a− p)τλ
p (a+ 1, c)f(z),

(1.9) z(τλ
p (a, c)f(z))′ = (λ+ p)τλ+1

p (a, c)f(z)− λτλ
p (a, c)f(z).

The operator τλ
p (a, c) were recently investigated by cho et al. [2], Ling et al.

[5]. Also the special case of τλ
p (a, c) were earlier considered by Choi et al. [3], Liu

[4] and Noor et al. [7].
By using the general linear operator τλ

p (a, c), we define a new subclass of Ap by

(1.10) Sλ
a,c(p,A,B) =

{
f : f ∈ Ap and

z(τλ
p (a, c)f(z))′

p τλ
p (a, c)f(z)

≺ 1 +Az

1 +Bz

}

Thus, for some suitably chosen parameters a, c, λ, p and A,B the class Sλ
a,c(p,A,B)

reduce to several known subclasses of univalent and multivalent analytic functions.
For example, we have S1

p+1,1(p,A,B) = S∗p(A,B), S1
p,1(p,A,B) = Cp(A,B) and

SA−B−1
1,1 (p,A,B) = ρp(A,B).

In the present paper, we investigate some interesting properties of functions in
the class Ap as those belonging to the subclass Sλ

a,c(p,A,B). Our results generalize
many results known in the literature, especially the recent work of Ling and Liu [5].

To prove our main results, we need the following lemmas.

Lemma 1.1 ([9]). If f ∈ C1(0) and g ∈ S∗1 (0), then for each function F, analytic
in U, the image of U under (f ∗Fg)/(f ∗ g) is a subset of the convex hull of F (U).

Lemma 1.2. If −1 ≤ B < A ≤ 1, β > 0 and the complex number γ satisfies
<(γ) ≥ −β(1−A)/(1−B), then the differential equation

q(z) +
zq′(z)

βq(z) + γ
=

1 +Az

1 +Bz
(z ∈ A)

has a univalent solution in A given by

(1.11) q(z) :=


zβ+γ(1 +Bz)β(A−B)/B

β
∫ z

0
tβ+γ−1(1 +Bt)β(A−B)/Bdt

− γ

β
, (B 6= 0);

zβ+γ exp(βAz)
β

∫ z

0
tβ+γ−1 exp(βAt)dt

− γ

β
, (B = 0).

If φ(z) = 1 + c1z + c2z
2 + · · · is analytic in U and satisfies

(1.12) φ(z) +
zφ′(z)

βφ(z) + γ
≺ 1 +Az

1 +Bz
(z ∈ U),

then
φ(z) ≺ q(z) ≺ 1 +Az

1 +Bz
(z ∈ U)
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and q(z) is the best dominant of (1.12).

The above lemma is due to Miller and Mocanu [6].

Lemma 1.3 ([11]). Let ν be a positive measure on [0, 1]. Let h be a complex-valued
function defined on U× [0, 1] such that h(., t) is analytic in U for each t ∈ [0, 1], and
h(z, .) is ν-integrable on [0, 1] for all z ∈ U. In addition, suppose that <{h(z, t)} >
0, h(−r, t) is real and <{1/h(z, t)} ≥ 1/h(−r, t) for |z| ≤ r < 1 and t ∈ [0, 1]. If
h(z) =

∫ 1

0
h(z, t)dν(t), then <{1/h(z)} ≥ 1/h(−r).

Lemma 1.3 ([12]). For real numbers a, b, c (c 6= 0,−1,−2, · · · ), we have

(1.13)
∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt =
Γ(b)Γ(c− b)

Γ(c) 2F1(a, b; c; z) (c > b > 0)

(1.14) 2F1(a, b; c; z) = 2F1(b, a; c; z)

(1.15) 2F1(a, b; c; z) = (1− z)−a
2F1(a, c− b; c; z/1− z).

2. Main Results

We begin with the following:

Theorem 2.1. Let λ > −1 and φ(z) ∈ S1
1,1(1, 1,−1). If f(z) ∈ Sλ

a,c(1, A,B), then
(φ ∗ f)(z) ∈ Sλ

a,c(1, A,B).

Proof. we have f(z) ∈ Sλ
a,c(1, A,B) if and only if

F (z) :=
z(τλ

1 (a, c)f)′(z)
τλ
1 (a, c)f(z)

≺ 1 +Az

1 +Bz
:= G(z).

Since G is convex, an application of Lemma (1.1) yields

φ(z) ∗ F (z)(τλ
1 (a, c)f(z))

φ(z) ∗ τλ
1 (a, c)f(z)

=
φ(z) ∗ z(τλ

1 (a, c)f)′(z)
φ(z) ∗ τλ

1 (a, c)f(z)

=
z(τλ

1 (a, c)f ∗ φ)′(z)
τλ
1 (a, c)(f ∗ φ)(z)

≺ p
1 +Az

1 +Bz
,

and so f ∗ φ ∈ Sλ
a,c(1, A,B). �

By taking special values for a, c, λ, we have the following well-known results as
corollaries of Theorem 2.1.

Corollary 2.1. For −1 ≤ B < A ≤ 1, if φ ∈ C1(0), f ∈ S∗1 (A,B), then φ ∗ f ∈
S∗1 (A,B).
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Corollary 2.2. For −1 ≤ B < A ≤ 1, if φ ∈ C1(0), f ∈ C1(A,B), then φ ∗ f ∈
C1(A,B).

Corollary 2.3. For −1 ≤ B < A ≤ 1, if φ ∈ C1(0), f ∈ ρ1(A,B), then φ ∗ f ∈
ρ1(A,B).

Theorem 2.2. Let a ≥ p, λ ≥ 0,−1 ≤ B < 0 and 0 ≤ A <
−B
p

. Then

Sλ
a,c(p,A,B) ⊂ Sλ

a+1,c(p, 1− 2α
p
,−1),

where

α = a

{
2F1(1,

p(B −A)
B

; a+ 1;
B

B − 1
)
}−1

+ p− a.

The result is best possible.

Proof. Let f ∈ Sλ
a,c(p,A,B) and set

(2.1) ψ(z) =
z(τλ

p (a+ 1, c)f)′(z)
pτλ

p (a+ 1, c)f(z)
, (z ∈ U).

We note that ψ(z) = 1+c1z+· · · is analytic in U. By logarithmically differentiating
both sides of (2.1) and multiplying the resulting equation by z, we have

z(τλ
p (a, c)f)′(z)

pτλ
p (a, c)f(z)

= ψ(z) +
zψ′(z)

p ψ(z) + (a− p)
≺ 1 +Az

1 +Bz
, (z ∈ U).

Thus, ψ(z) satisfies the differential subordination (1.12) and hence by Lemma 1.2,
we get

ψ(z) ≺ q(z) ≺ 1 +Az

1 +Bz
(z ∈ U),

where q(z) is given by

(2.2) q(z) =
za(1 +Bz)

p(A−B)
B

p
∫ z

0
ta−1(1 +Bt)

p(A−B)
B dt

− a− p

p
.

Let us define Q(z) by
1

Q(z)
:= p q(z)+a−p. For completing our proof it is sufficient

to show that

inf
|z|<1

<
{

1
Q(z)

}
=

1
Q(−1)

.
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If we set d =
p(A−B)

B
, e = a+ 1, b = a, then e > b > 0 and our hypotheses a ≥ p,

0 ≤ A ≤ −B
p

implies e > d > 0. From (2.2), by using (1.13), (1.14), (1.15) and

Lemma 1.4 we find that

Q(z) = (1 +Bz)d

∫ 1

0

sb−1(1 +Bsz)−dds =
Γ(b)
Γ(e) 2F1(1, d; e;

Bz

Bz + 1
)

=
Γ(b)
Γ(e)

(1 +Bz)2F1(1, e− d; e;−Bz)

=
Γ(b)

Γ(e− d)Γ(d)
(1 +Bz)

∫ 1

0

te−d−1(1− t)d−1(1 +Btz)−1dt

=
Γ(b)

Γ(e− d)Γ(d)
(1 +Bz)

∫ 1

0

(1− t)e−d−1td−1(1 +B(1− t)z)−1dt

=
∫ 1

0

h(z, t)dν(t),

where

h(z, t) :=
1 +Bz

1 + (1− t)Bz
(0 ≤ t ≤ 1) and dν(t) :=

Γ(b)
Γ(d)Γ(e− d)

td−1(1− t)e−d−1dt.

It is easily verified that ν(t) is a positive measure on [0, 1] and <{h(z, t)} > 0, for
−1 ≤ B < 0, and h(−r, t) is real for 0 ≤ r < 1, t ∈ [0, 1]. Now

<
{

1
h(z, t)

}
= <

{
1 + (1− t)Bz

1 +Bz

}
≥ 1− (1− t)Br

1−Br
=

1
h(−r, t)

,

for |z| ≤ r < 1 and t ∈ [0, 1]. Therefore, by using Lemma 1.3, we have <
{

1
Q(z)

}
≥

1
Q(−r)

, |z| ≤ r < 1 and by letting r 7→ 1−, we obtain <
{

1
Q(z)

}
≥ 1
Q(−1)

. Hence

the proof is complete. �

The proof of Theorem 2.3 below is much akin to that of Theorem 2.2 and so
the details involved may be omitted.

Theorem 2.3. Let λ ≥ 0,−1 ≤ B < 0 and 0 ≤ A <
−B(λ+ 1)

p
. Then

Sλ+1
a,c (p,A,B) ⊂ Sλ

a,c(p, 1− 2γ
p
,−1),

where

γ = (λ+ p)
{

2F1(1,
p(B −A)

B
;λ+ p+ 1;

B

B − 1
)
}−1

− λ.
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The result is best possible.

Theorem 2.4. Let λ > −p,−1 ≤ B < A ≤ 1, a > 0, c > 0 and p ∈ N :=
{1, 2, 3, · · · }. If f(z) = zp +

∑∞
n=1 anz

n+p ∈ Sλ
a,c(p,A,B), then

(2.3) |an| ≤
(pA− pB)n(a)n

(c)n(λ+ p)n
(n = 1, 2, 3, · · · ).

When B = −1, the result is sharp for the function given by τλ
p (a, c)f(z) =

zp

(1− z)p(1+A)
.

Proof. Since f(z) = zp +
∑∞

n=1 anz
n+p ∈ Sλ

a,c(p,A,B), it follows that

(2.4)
z(τλ

p (a, c)f)′(z)
pτλ

p (a, c)f(z)
:= h(z),

where h(z) = 1 +p1z+p2z
2 + · · · is analytic in U and h(z) ≺ 1 +Az

1 +Bz
. Substituting

the series expansion of f(z) and h(z) in (2.4) and equating the coefficients of zn on
both sides of the resulting equation, we obtain

(2.5) nkn = pnp k0 + pn−1p k1 + · · ·+ p1p kn−1 (n = 1, 2, 3, · · · ),

where p0 := k0 := 1 and kn :=
(c)n(λ+ p)n

(a)n(1)n
an. Using the well known coefficient

estimates (see for details [1])

|pn| ≤ A−B, (n ≥ 1)

in (2.5), we get the required result (2.3). It is easily verified the result is sharp for

the function f defined by τλ
p (a, c)f(z) =

zp

(1− z)p(1+A)
, when B = −1. �

Letting λ = 1, a = p + 1 and c = 1 in the above theorem, yields the following
corollary.

Corollary 2.4. Let −1 ≤ B < A ≤ 1. If f(z) = zp +
∑∞

n=1 anz
n+p ∈ S∗p(A,B),

then

|an| ≤
(pA− pB)n

(1)n
n = 1, 2, 3, · · · ,

when B = −1, the result is sharp for the function defined by f(z) =
zp

(1− z)p(1+A)
.

Also by taking λ = 1, a = p and c = 1 in the Theorem 2.4 we get

Corollary 2.5. Let −1 ≤ B < A ≤ 1. If f(z) = zp +
∑∞

n=1 anz
n+p ∈ Cp(A,B),

then

|an| ≤
(pA− pB)n

(1)n(p+ n)
n = 1, 2, 3, · · · ,
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and the result is sharp for the function defined by f(z) =
zp

(1− z)p(1+A)
when B =

−1.

Corollary 2.6. Let −1 ≤ B < A ≤ 1. If f(z) = zp +
∑∞

n=1 anz
n+p ∈ ρp(A,B),

then
|an| ≤ 1 n = 1, 2, 3, · · · ,

and the result is sharp for the function defined by f(z) =
zp

(1− z)p(1+A)
when B =

−1.

Theorem 2.5. Let a > 0, c > 0,−1 ≤ B < A ≤ 1 and λ > −p. If f(z) =
zp +

∑∞
n=1 anz

n+p ∈ Sλ
a,c(p,A,B), then

(2.6)
∣∣∣f (k)(z)

∣∣∣ ≤ 1
rk
{ Lp(a, c) Lp(1, λ+ p)rk(zp

2F1(pA− pB, 1; 1; z))(k)
z=r},

(|z| = r < 1, k ≤ p, p ∈ N = {1, 2, 3, · · · }).
When B = −1, the result is sharp for the function f(z) given by f(z) =

 Lp(a, c) Lp(1, λ+ p)
zp

(1− z)p(1+A)
.

Proof. Let f(z) = zp +
∑∞

n=1 anz
n+p ∈ Sλ

a,c(p,A,B). Then, using Theorem 2.4, we
obtain that∣∣∣zkf (k)(z)

∣∣∣ ≤ p(p− 1) · · · (p− k + 1)|zp|+
∞∑

n=1

(n+ p) · · · (n+ p− k + 1)|an||z|n+p

≤ p(p− 1) · · · (p− k + 1)rp

+
∞∑

n=1

(n+ p) · · · (n+ p− k + 1)
(pA− pB)n(a)n

(c)n(λ+ p)n
rn+p

=
∞∑

n=0

(n+ p) · · · (n+ p− k + 1)
(pA− pB)n(a)n

(c)n(λ+ p)n
rn+p

=  Lp(a, c) Lp(1, λ+ p)rk(zp
2F1(pA− pB, 1; 1; z))(k)

z=r.

Thus ∣∣∣f (k)(z)
∣∣∣ ≤ 1

rk
 Lp(a, c) Lp(1, λ+ p)rk(zp

2F1(pA− pB, 1; 1; z))(k)
z=r.

By considering the function f(z) =  Lp(a, c) Lp(1, λ+ p)
zp

(1− z)p(1+A)
, one can show

that this result is sharp when B = −1. �

Corollary 2.7. Let −1 ≤ B < A ≤ 1. If f(z) ∈ ρp(A,B), then∣∣∣f (k)(z)
∣∣∣ ≤ (

zp

1− z

)(k)

z=r

, k = 0, 1, 2, · · · , p,



On Subclasses of P-Valent Analytic Functions 401

where r = |z|. This result is sharp and the extreme function is f(z) =
zp

1− z
when

B = −1.

Corollary 2.6. Let −1 ≤ B < A ≤ 1. If f(z) ∈ S∗p(A,B), then

∣∣∣f (k)(z)
∣∣∣ ≤ (

zp

(1− z)p(A−B)

)(k)

z=r

, k = 0, 1, 2, · · · , p,

where r = |z|. This result is sharp for the function given by f(z) =
zp

(1− z)p(1+A)

when B = −1.
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