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Abstract. In this paper, we derive some generating relations involving Konhauser poly-

nomials, Gauss, Humbert, Appell and Kampé de Fériet hypergeometric functions with

the help of four general theorems on generating functions (partly unilateral and partly

bilateral) of one and two variables.

1. Introduction

Let f(z1, · · · , zr) be a function of r independent complex variables defined in
some domain Cr as the sum of a confluent multiple series

(1.1) f(z1, · · · , zr) =
∞∑

k1,··· ,kr=0

A(k1, · · · , kr) zk1
1 · · · zkr

r

and let

(1.2) ∆n(m1, · · · ,mr; z1, · · · , zr) =
M≤n∑

k1,··· ,kr=0

(−n)M A(k1, · · · , kr) zk1
1 · · · zkr

r ,

where {A(k1, · · · ., kr) | kj ∈ N, j = 1, · · · , r} is a bounded multiple complex
sequence and M is defined by M = m1k1 + · · · + mrkr, m1, · · · ,mr representing
positive integers.

Konhauser [5] defined the polynomial Zα
n (x; k) by

(1.3) Zα
n (x; k) =

Γ(kn+ α+ 1)
n!

n∑
j=0

(−1)j

(
n

j

)
xkj

Γ(kj + α+ 1)
,
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where k is a positive integer.

Agarwal and Manocha [1] have obtained the following theorem for Kounhasuer
polynomials.

Let a and b are complex constants, not both zero. Then

∞∑
n=0

Zα
n

(
x

(a+ bn)1/k
; k

)
[(a+ bn)t]n

(1 + α)kn
(1.4)

=
eaν

1− bν
0Fk

 ;

− ν
(x
k

)k

∆(k; 1 + α) ;

 ,
where ν = tebν , ∆(k;α) denote the sequence of n parameters α/k, (α + 1)/k, · · · ,
(α+ k − 1)/k, k ≥ 1 and 0Fk is hypergeometric function [11, p.42(1)].

From Lagrange expansion formula [8], we have

(1.5)
eaν

1− bν
=

∞∑
n=0

(a+ bn)n

n!
tn,

where ν is a function of t defined implicitly by ν = tebν , ν(0) = 0.

An interesting (partly bilateral and partly unilateral) generating function for
Laguerre polynomials Lα

n(x) [9] due to Exton [3, p.147(3)], is recalled here in the
following (modified) form (see [6], [7])

(1.6) exp(s+ t− xt/s) =
∞∑

m=−∞

∞∑
n=m?

sm tn

(m+ n)!
L(m)

n (x)

or equivalently,

(1.7) exp(s+ t− xt/s) =
∞∑

m=−∞

∞∑
n=m?

sm tn

m!n! 1F1(−n; m+ 1; x),

where

(1.8) m? := max{0,−m} (m ∈ Z := {0,±1,±2, · · · })

In subsequent sections of this paper, we shall encounter the following polynomial
θa,b

n,k(x, y) involving Konhauser polynomial and its special cases

(1.9) θa,b
n,k(x, y) =

n∑
p=0

(a+ b(n− p))n−p (−x)p

(p+m)! p! (1 + α)k(n−p)
Zα

n−p

(
y

(a+ b(n− p))1/k
; k

)



Some Theorems on Generating Functions 375

(1.10) θa,b
n,1(x, y) =

n∑
p=0

(a+ b(n− p))n−p (−x)p

(p+m)! p! (1 + α)n−p
Lα

n−p

(
y

a+ b(n− p)

)

(1.11) θa,b
n,1(x, 0) =

n∑
p=0

(a+ b(n− p))n−p (−x)p

(p+m)! p! (n− p)!

(1.12) θ1,0
n,1(x, 0) =

1
n! m! 1F1[−n; 1 +m; x] =

1
Γ(1 +m+ n)

Lm
n (x),

where Lα
n(x) is Laguerre polynomial [9] and m and k are positive integers.

The article is organized as follows. In the main Section 2, we derive two theo-
rems on partly bilateral and partly unilateral generating functions of general nature.
Two more theorems on multiple generating functions involving Appell and Kampé
de Fériet series are proved in Section 3. Later in Section 4, it is shown as to how
these theorems lead to a number of generating functions for certain classical poly-
nomials.

2. Generating functions involving bilateral series

Theorem 1. Let the function f(z1, · · · , zr) be defined by (1.1) and let ∆n(m1, · · · ,mr;
z1, · · · , zr) be defined by (1.2). Also let m? be defined by (1.8). Then

es−xt/s+aν

1− bν
f [(−ν)m1z1, · · · , (−ν)mr zr](2.1)

=
∞∑

m=−∞

∞∑
n=m?

sm tn
n∑

p=0

(−x)p(a+ b(n− p))n−p

(p+m)! p! (n− p)!

× ∆n−p

[
m1, · · · ,mr;

z1
(a+ b(n− p))m1

, · · · , zr

(a+ b(n− p))mr

]
,

where ν = tebν , a and b are complex constants, not both zero and provided that each
member of (2.1) exists.

Proof. Denote for convenience, the first member of the assertion (2.1) by Ω. Then
using the following expansion formula due to Agarwal and Manocha [2, p.276(1.4)]

eaν

1− bν
f [(−ν)m1z1, · · · , (−ν)mr zr](2.2)

=
∞∑

n=0

(a+ bn)n tn

n!
× ∆n

[
m1, · · · ,mr;

z1
(a+ bn)m1

, · · · , zr

(a+ bn)mr

]
,

where a and b are arbitrary complex constants, not simultaneously equal to zero
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and ν = tebν and expanding the exponential function, we obtain

Ω =
∞∑

m=0

sm

m!

∞∑
p=0

(−x)p tp

k! sp

∞∑
n=0

(a+ bn)n tn

n!
(2.3)

× ∆n

[
m1, · · · ,mr;

z1
(a+ bn)m1

, · · · , zr

(a+ bn)mr

]
�

Upon replacing the summation indices m and n in (2.3) by (m+ p) and (n− p)
respectively, if we rearrange the resulting triple series (which can be justified by
absolute convergence of the series involved), we are led finally to the generating
function (2.1).

Remark. The above theorem provides us a class of generating relations for the
functions ∆n. A large variety of special cases including [2, p.276(1.4)] (when x = 0)
may be deduced from it by assigning particular values to variables and parameters.

Theorem 2. Let a and b be complex constants, not both zero and let ν = tebν . Also
let m? be defined by (1.8). Then

(2.4)
eaν+s−xt/s

1− bν
0Fk

[
; ∆(k; 1 + α); −ν

(y
k

)k
]

=
∞∑

m=−∞

∞∑
n=m?

sm tn θa,b
n,k(x, y),

where θa,b
n,k(x, y) is given by (1.9).

The derivation of (2.4) runs parallel to that of (2.1) except that we use (1.4) in
place of (2.2) and we skip the details.

3. Multiple generating functions

Theorem 3. The Appell’s hypergeometric polynomials [11]

(3.1) fm,n(x, y) = F2

[
α, −n, −m; β, γ;

x

a1 + b1n
,

y

a2 + b2m

]
are generated by

∞∑
n=0

∞∑
m=0

(a1 + b1n)n (a2 + b2m)m fm,n(x, y)
tn Tm

n! m!
(3.2)

=
ea1ν+a2w

(1− b1ν) (1− b2w)
ψ2[α; β, γ; −xν,−yw],

where ν = teb1ν , w = Teb2w and ψ2 denotes Humbert’s confluent hypergeometric
function of two variables [11].
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Proof. Starting with the left hand side of (3.2), using series expansion of Appell’s
function F2 (see [11, p.53(5)]) and

(3.3) (−m)k =
(−1)k m!
(m− k)!

, 0 ≤ k ≤ m

we have
∞∑

n,m=0

(a1+b1n)n (a2+b2m)m tn Tm

n! m!

n∑
k=0

(−1)k k!
(n− k)!

xk

(a1 + b1n)k

m∑
r=0

(−1)r r!
(m− r)!

(α)k+r

(β)k (γ)r

yr

(a2 + b2m)r

Now replacing n by n+ k and m by m+ r and using (1.5), we get

ea1ν+a2w

(1− b1ν)(1− b2w)

∞∑
k,r=0

(α)k+r

(β)k (γ)r

(−xteb1ν)k

k!
(−yTeb2w)r

r!

=
ea1ν+a2w

(1− b1ν) (1− b2w)
ψ2[α; β, γ; −xν,−yw]

by [11, p.59(42)]. �

Following the method of proof of the formula (3.2), we can readily obtain the
following theorem involving Kampé de Fériet series of two variables F p:l;m

q:r;s (see [11,
p.63(16)]).

Theorem 4. The Kampé de Fériet’s hypergeometric polynomials

(3.4) fm,n(x, y) = Fp:1;1
q:0;1

 (αp) : −n;−m ;
x

a1 + b1n
,

y

a2 + b2m
(βq) : ; ;


are generated by

∞∑
n,m=0

(a1 + b1n)n (a2 + b2m)m fm,n(x, y)
tn Tm

n!m!
(3.5)

=
ea1ν+a2w

(1− b1ν) (1− b2w) pFq

 (αp) ;
− (xν + yw)

(βq) ;

 ,
where ν = teb1ν , w = Teb2w, (αp) denotes α1, · · · , αp and pFq denotes generalized
hypergeometric function [11, p. 42(1)].

4. Applications

First of all in its special cases when z1, · · · , zr = 0, (2.1) reduces to

(4.1)
es−xt/s+aν

1− bν
=

∞∑
m=−∞

∞∑
n=m?

sm tn θa,b
n,1(x, 0),
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where θa,b
n,1(x, 0) is given by (1.11). Secondly upon setting a = 1 and b = 0 and

using (1.12), (4.1) would obviously correspond to the generating function of Exton
given by (1.6) (or (1.7)).

For r = 1 and f(−νz1) = 0F1[−; α+ 1; −νy], (2.1) reduces to

(4.2)
es−xt/s+aν

1− bν
0F1[ ; α+ 1; −νy] =

∞∑
m=−∞

∞∑
n=m?

sm tn

m!n!
θa,b

n,1(x, y),

where θa,b
n,1(x, y) is given by (1.10). Further for y = 0, (4.2) reduces to (4.1) and for

x = 0, we have

(4.3)
eaν

1− bν
0F1[ ; α+ 1; −yν] =

∞∑
n=0

tn (a+ bn)n

(1 + α)n
Lα

n

(
y

a+ bn

)
Another special case of (2.1) would occur when we set r = 1 and f(−νz1) =

1F1[1 + β; 1 + α;
(
z − 1

2

)
ν]. Thus we have

es−xt/s+aν

1− bν
1F1

[
1 + β; 1 + α;

(
z − 1

2

)
ν

]
(4.4)

=
∞∑

m=−∞

∞∑
n=m?

sm tn ×
n∑

p=0

(−x)p(a+ b(n− p))n−p

(p+m)! p! (n− p)! (1 + α)n−p

· Pα,β−α−n+p
n−p

(
z

a+ b(n− p)

)
,

where P (α,β)
n (x) is Jacobi polynomial (11, p.91).

The generating function (2.1) for x = 0 corresponds to the main result of
Agarwal and Manocha [2, p.276].

Next, we consider some applications of assertion (2.4). First of all by setting
k = 1, (2.4) immediately yields (4.2).

If in the assertion (2.4), we set x = 0, then it reduces to (1.4).

For a = 1 and b = 0, (2.4) yields the generating function

et+s−xt/s
0Fk

[
; ∆(k; 1 + α); −t

(y
k

)k
]

(4.5)

=
∞∑

m=−∞

∞∑
n=m?

sm tn
n∑

p=0

(−x)p

(p+m)! p! (1 + α)k(n−p)
Zα

n−p(y; k),

which further for x = 0 and t = s reduces to the following known generating function
[1, p.116(18), see also 10, pp. 243-244]

(4.6)
∞∑

n=0

Zα
n (y; k)

tn

(1 + α)kn
= et

0Fk

[
; ∆(k; 1 + α); −t

(y
k

)k
]



Some Theorems on Generating Functions 379

Setting α = β = γ in (3.1) and using [11, p.53(5)], we get
∞∑

n,m=0

(a1 + b1n− x)n (a2 + b2m− y)m(4.7)

× 2F1

[
−n,−m; α;

xy

(a1 + b1n− x) (a2 + b2m− y)

]
tn Tm

=
ea1ν+(a2−y)w

(1− b1ν) (1− b2w) 1F1[α; 2α; yw − xν],

where ν = teb1ν and w = Teb2w.

For p = q = 1, (3.5) yields
∞∑

n,m=0

(a1 + b1n)n (a2 + b2m)m(4.8)

× F1

[
α,−n,−m; β;

x

(a1 + b1n)
y

(a2 + b2m)

]
tn Tm

n! m!

=
ea1ν+a2w

(1− b1ν) (1− b2w) 1F1[α; β; −(xν + yw)],

where ν = teb1ν , w = Teb2w and F1 is Appell’s function [11, p.53(4)].

For a1 = a2 = 1 and b1 = b2 = 0, (3.2) yields
∞∑

n,m=0

F2 [α,−n,−m; β, γ; x y]
tn Tm

n! m!
(4.9)

= et+T ψ2[α; β, γ; −xt,−yt]

which is a generalization of the well known generating function due to Rainville [9]

(4.10)
∞∑

n=0

2F1 [−n, α; β; x]
tn

n!
= et

1F1[α; β; −xt]

For y = 0, (3.2) reduces to a result [3, p.159(3.4)]
∞∑

n=0

(a+ bn)n

(1 + α)n
Pα, β−n

n

(
x

a+ bn

)
tn(4.11)

=
eaν

1− bν
1F1

[
1 + α+ β; 1 + α; −

(
1− x

2

)
ν

]
, ν = tebν ,

which further for α = 0 yields a known result [3, p.160(3.18)]
∞∑

n=0

(a+ bn)n

n!
Y (β−n)

n

(
x

a+ bn

)
tn(4.12)

=
eaν

1− bν

(
1− xν

2

)−α−1

, ν = tebν ,
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where Y
(α)
n (x) are generalized Bessel polynomials of Krall and Frink (see [11],

p.75(1)).
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