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Abstract. In this paper, we shall consider a class of hyperbolic nonlinear differential

equations with continuous deviating arguments. Some new sufficient conditions for oscil-

lation of all solutions with two kinds of boundary conditions are obtained.

1. Introduction

The study of oscillatory behavior of solutions of partial differential equations
with deviating arguments, besides its theoretical interest, is important from the
viewpoint of applications. Examples of applications can be found in [10]. But
only a few results on the oscillatory behavior of hyperbolic equations with devi-
ating arguments were recently obtained in [1]-[5] and the references cited therein.
In this paper, we shall consider the nonlinear hyperbolic equation with continuous
arguments

(E)
∂

∂t
[p(t)

∂

∂t
u(x, t)] = α(t)∆u(x, t) +

∫ b

a

β(t, ξ)∆u[x, h(t, ξ)]dσ(ξ)

−
∫ b

a

q(x, t, ξ)f(u[x, g(t, ξ)])dσ(ξ), (x, t) ∈ Ω×R+ ≡ G,

where Ω is a bounded domain in Rn, n ≥ 1, with a piecewise smooth bounded ∂Ω,
and ∆u is the Laplacian in Rn, R+ = (0,∞).

Throughout, we will assume that the following conditions hold:

• (H1) α, p ∈ C(R+, R+),
∫∞ 1

p(t)dt = ∞, σ ∈ ([a, b], R) is nondecreasing, the
integrals of the equation (E) are stieltjes integral.
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• (H2) β ∈ C(R+ × [a, b], R+), q ∈ C(G × [a, b], R+), f ∈ C(R,R) is convex
in R+, uf(u) > 0 and f(u)

u ≥ K > 0 for u 6= 0.

• (H3) g, h ∈ C(R+ × [a, b], R), d
dtg(t, a) ≡ g′(t, a) exists and g(t, ξ) ≤ t,

h(t, ξ) ≤ t, for ξ ∈ [a, b], g and h are nondecreasing with t and ξ, respectively,
and limt→∞minξ∈[a,b] g(t, ξ) = +∞, limt→∞minξ∈[a,b] h(t, ξ) = +∞

we consider two kinds of boundary conditions:

(B1)
∂u(x, t)

∂N
+ µ(x, t)u = 0 on (x, t) ∈ ∂Ω×R+,

(B2) u(x, t) = 0 on (x, t) ∈ ∂Ω×R+,

where N is the unit exterior normal vector to ∂Ω and µ is a nonnegative continuous
function on ∂Ω×R+ .

Definition 1. A function u(x, t) ∈ C2(Ω × [t1,∞), R)
⋂

C1(Ω × [t−1,∞), R) is
called a solution of the problem (E), (B), if it satisfies (E) in the domain G along
with the corresponding boundary condition, where

t−1 = min{ inf
ξ∈[a,b]

{inf
t≥0

g(t, ξ)}, inf
ξ∈[a,b]

{inf
t≥0

h(t, ξ)}}.

Definition 2. A solution u(x, t) of the problem (E), (B) is said to be oscillatory in
the domain G, if for each positive number γ there exists a point (x1, t1) ∈ Ω×[γ,∞),
where u(x1, t1) = 0.

Definition 3. A function v(t) is called eventually positive (negative) if there exists
a number t1 ≥ t0 > 0 such that v(t) > 0(< 0) holds for all t1 ≥ t0.

It is easy to see that equation (E) includes the following delay hyperbolic dif-
ferential equations:

(E1)
∂

∂t
[p(t)

∂

∂t
u(x, t)] = α(t)∆u(x, t) +

m∑
j=1

βj(t)∆u[x, hj(t)]

−q(x, t)u(x, t)−
s∑

k=1

qk(x, t)f(u[x, gk(t)]), (x, t) ∈ G.

and we can see that the hyperbolic equation in [1-5] are special cases of equations
(E) and (E1). Our aim in this paper is to give some new oscillation criteria, Philos-
type [6] oscillation criteria for equation (E) with the boundary conditions (B1) and
(B2). Our results in this paper extend and improve the results in [1]-[5].

2. Main results

In this section we will give some oscillation criteria of (E) with the boundary
conditions (B1) and (B2).
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First, we consider the oscillation of the problem (E), (B1).

Theorem 1. Suppose that the condition (H1)− (H3) hold. and let the differential
inequality

(1) (p(t)v′(t))′ +
∫ b

a

Q(t, ξ)f(v[g(t, ξ)])dσ(ξ) ≤ 0.

have no eventually positive solutions. Then each solution u(x, t) of problem (E),
(B1) oscillates in the domain G, where

(2) Q(t, ξ) = min{q(x, t, ξ) : x ∈ Ω},

(3) v(t) =

∫
Ω

u(x, t)dx∫
Ω

dx
.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of
the problem (E), (B1). Without loss of generality, we assume that u(x, t) > 0,
(x, t) ∈ Ω × [t0,∞), t0 > 0. By condition (H3) there exists t1 ≥ t0 such that
g(t, ξ) ≥ t0, h(t, ξ) ≥ t0 for (t, ξ) ∈ [t1,∞)× [a, b]. then

(4) u[x, h(t, ξ)] > 0 and u[x, g(t, ξ)] > 0 for (x, t, ξ) ∈ Ω× [t1,∞)× [a, b].

Integrating equation (E) with respect to x over the domain Ω, we have

d

dt
[p(t)

d

dt

∫
Ω

u(x, t)dx](5)

= α(t)
∫

Ω

∆u(x, t)dx +
∫

Ω

∫ b

a

β(t, ξ)∆u[x, h(t, ξ)]dσ(ξ)dx

−
∫

Ω

∫ b

a

q(x, t, ξ)f(u[x, g(t, ξ)])dσ(ξ)dx.

Using Green′s formula and (B1), we obtain

(6)
∫

Ω

∆u(x, t)dx =
∫

∂Ω

∂u(x, t)
∂N

ds = −
∫

∂Ω

µ(x, t)u(x, t)ds ≤ 0, t ≥ t1,

∫
Ω

∆u[x, h(t, ξ)]dx =
∫

∂Ω

∂u[x, h(t, ξ)]
∂N

ds(7)

= −
∫

∂Ω

µ[x, h(t, ξ)]u[x, h(t, ξ)]ds ≤ 0, t ≥ t1,

where ds is the surface element on ∂Ω, and∫
Ω

∫ b

a

β(t, ξ)∆u[x, h(t, ξ)]dσ(ξ)dx(8)

=
∫ b

a

β(t, ξ)
( ∫

Ω

∆u[x, h(t, ξ)]dx
)
dσ(ξ) ≤ 0, t ≥ t1.
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From Jensen ′ s inequality and (H2) ,we have∫
Ω

∫ b

a

q(x, t, ξ)f(u[x, g(t, ξ)])dσ(ξ)dx(9)

=
∫ b

a

∫
Ω

q(x, t, ξ)f(u[x, g(t, ξ)])dxdσ(ξ)

≥
∫ b

a

Q(t, ξ)
[ ∫

Ω

f(u[x, g(t, ξ)])dx
]
dσ(ξ)

≥
∫ b

a

Q(t, ξ)
[ ∫

Ω

dxf(

∫
Ω

u[x, g(t, ξ)]dx∫
Ω

dx
)
]
dσ(ξ), t ≥ t1.

Therefore, combining (5)-(9), we obtain

(10) (p(t)v′(t))′ +
∫ b

a

Q(t, ξ)f(v[g(t, ξ)])dσ(ξ) ≤ 0, t ≥ t1.

It is easy to see that v(t) is a eventually positive solution of (10), which contradicts
the condition of the theorem. �

Next, we present some new oscillation criteria for (E) and (B1) by using integral
averages condition of Philos-type. Following Philos [6], we introduce a class of
functions P. Let

(11) D0 = {(t, s) : t > s ≥ t0}, and D = {(t, s) : t ≥ s ≥ t0}.

The function H ∈ C(D,R) is said to belong to the class P if

(T1) H(t, t) = 0 for t ≥ t0,H(t, s) > 0 on D0;
(T2) H has a continuous and nonpositive partial deviative on

D0 with respect to the second variable and there exist functions
h ∈ C(D0, R) and ρ ∈ C1([t0,∞), R+) such that

−∂H(t, s)
∂s

− ρ′(s)
ρ(s)

H(t, s) = h(t, s)
√

H(t, s) for all (t, s) ∈ D0.(12)

Theorem 2. Suppose that (H1) − (H3) hold. If there exists a function ρ ∈
C1([t0,∞), R+) and let H belong to the class P such that

(13) lim sup
t→∞

1
H(t, t0)

∫ t

t0

[H(t, s)ρ(s)Q(s)− ρ(s)p[g(s, a)]
4g′(s, a)

h2(t, s)]ds = ∞,

where

(14) Q(s) =
∫ b

a

KQ(s, ξ)dσ(ξ).
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Then each solution of (E), (B1) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of
the problem (E), (B1). Without loss of generality, we assume that u(x, t) > 0,
(x, t) ∈ Ω × [t0,∞). By condition (H3) there exists a t1 ≥ t0 such that (4) holds.
From the proof of Theorem 1, we have the inequality (10), and by condition (H2),
we obtain

(15) (p(t)v′(t))′ +
∫ b

a

KQ(t, ξ)v[g(t, ξ)]dσ(ξ) ≤ 0, t ≥ t1,

where Q(t, ξ) and v(t) are defined by (2) and (3). It is easy to know that v(t) > 0,
v′(t) > 0 for t ≥ t1, and g(t, ξ) is nondecreasing in ξ, we have

(16) (p(t)v′(t))′ + Q(t)v[g(t, a)] ≤ 0, for t ≥ t1,

where

Q(t) =
∫ b

a

KQ(t, ξ)dσ(ξ).

Set

(17) W (t) = ρ(t)
p(t)v′(t)
v[g(t, a)]

for t ≥ t1,

then W (t) > 0 for t ≥ t1. From (17), (16) and (H3), we obtain

(18) W ′(t) ≤ ρ′(t)
ρ(t)

W (t)− ρ(t)Q(t)− g′(t, a)
ρ(t)p[g(t, a)]

W 2(t), t ≥ t1.

In order to simplify notations we denote by

R(t) =
g′(t, a)

ρ(t)p[g(t, a)]
.

Then from (18) for all t ≥ t1 we have∫ t

t1

H(t, s)ρ(s)Q(s)ds(19)

≤
∫ t

t1

H(t, s)
ρ′(s)
ρ(s)

W (s)ds−
∫ t

t1

H(t, s)W ′(s)ds−
∫ t

t1

H(t, s)R(s)W 2(s)ds

= H(t, t1)W (t1) +
∫ t

t1

[
∂H(t, s)

∂s
+

ρ′(s)
ρ(s)

H(t, s)]W (s)ds−
∫ t

t1

H(t, s)R(s)W 2(s)ds

= H(t, t1)W (t1)−
∫ t

t1

h(t, s)
√

H(t, s)W (s)ds−
∫ t

t1

H(t, s)R(s)W 2(s)ds

= H(t, t1)W (t1)−
∫ t

t1

[
√

H(t, s)R(S)W (s) +
h(t, s)

2
√

R(s)
]2ds +

∫ t

t1

h2(t, s)
4R(s)

ds.
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Thereby, we conclude that∫ t

t1

[H(t, s)ρ(s)Q(s)− h2(t, s)
4R(s)

]ds(20)

≤ H(t, t1)W (t1)−
∫ t

t1

[
√

H(t, s)R(s)W (s) +
h(t, s)
2R(s)

]2ds

≤ H(t, t1)|W (t1)|.

Then by (21) and (T2), we have

(21)
1

H(t, t0)

∫ t

t0

[H(t, s)ρ(s)Q(s)− h2(t, s)
4R(s)

]ds ≤
∫ t1

t0

ρ(s)Q(s)ds + |W (t1)|.

Inequality (21) yields

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[H(t, s)ρ(s)Q(s)− h2(t, s)
4R(s)

]ds < ∞,

and the latter inequality contradicts assumption (13). If u(x, t) < 0 for Ω× [t0,∞),
then −u(x, t) is a positive solution of (E), (B1) and the proof is similar. This
completes the proof. �

The following oscillation criterion treats the case when it is not possible to verify
easily condition (13).

Theorem 3. Suppose that (H1) − (H3) hold. Let the differentiable function ρ as
in Theorem 2 and let H belong to the class P such that

(22) 0 < inf
s≥t0

[lim inf
t→∞

H(t, s)
H(t, t0)

] ≤ ∞.

Let ϕ ∈ C
(
[t0,∞), R

)
such that for t ≥ t1

(23) lim sup
t→∞

1
H(t, t0)

∫ t

t0

h2(t, s)
R(s)

ds < ∞,

(24) lim sup
t→∞

∫ t

t0

ϕ2
+(s)R(s)ds = ∞,

and

(25) lim sup
t→∞

1
H(t, t0)

∫ t

t0

[H(t, s)ρ(s)Q(s)− h2(t, s)
4R(s)

]ds ≥ sup
t≥t0

ϕ(t),

where Q(s) and R(s) as in Theorem 2, ϕ+(t) = max{ϕ(t), 0}, then each solution of
(E), (B1) is oscillatory in G.
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Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the
problem (E), (B1). Without loss of generality, we assume that u(x, t) > 0, (x, t) ∈
Ω× [t0,∞). By condition (H3) there exists a t1 ≥ t0 such that the inequalities (4)
hold. By Theorem 2 we have (20). The inequality (20) yields

1
H(t, t1)

∫ t

t1

[H(t, s)ρ(s)Q(s)− h2(t, s)
4R(s)

]ds

≤ W (t1)−
1

H(t, t1)

∫ t

t1

[
√

H(t, s)R(s)W (s) +
h(t, s)
4R(s)

]2ds, t ≥ t1.

Hence, for t ≥ t1

lim sup
t→∞

1
H(t, t1)

∫ t

t1

[H(t, s)ρ(s)Q(s)− h2(t, s)
4R(s)

]ds

≤ W (t1)− lim inf
t→∞

1
H(t, t1)

∫ t

t1

[
√

H(t, s)R(s)W (s) +
h(t, s)

2
√

R(s)
]2ds.

By (25) and the last inequality, we obtain for t ≥ t1

(26) W (t1) ≥ ϕ(t1) + lim inf
t→∞

1
H(t, t1)

∫ t

t1

[
√

H(t, s)R(s)W (s) +
h(t, s)

2
√

R(s)
]2ds,

and hence

0 ≤ lim inf
t→∞

1
H(t, t1)

∫ t

t1

[
√

H(t, s)R(s)W (s) +
h(t, s)

2
√

R(s)
]2ds(27)

≤ W (t1)− ϕ(t1) < ∞.

Define the functions M(t) and N(t) as follows

M(t) =
1

H(t, t1)

∫ t

t1

H(t, s)R(s)W 2(s)ds,

N(t) =
1

H(t, t1)

∫ t

t1

[
√

H(t, s)h(t, s)W (s)ds.

The remainder of the proof is similar to that the proof of Theorem 2.6 in [7] and
hence is omitted. �

Now, we consider the oscillation of the problem (E), (B2). consider the Dirichlet
Problem in the domain Ω

∆u + λu = 0 in (x, t) ∈ Ω×R+,(28)
u = 0 on (x, t) ∈ ∂Ω×R+,(29)
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in which λ is a constant. It is well know [8] that the smallest eigenvalue λ1 of problem
(28)-(29) is positive and the corresponding eigenfunction Ψ(x) is also positive for
x ∈ Ω.

With each solution u(x, t) of the problem (E), (B2), we associate a function
U(t) defined by

(30) U(t) =

∫
Ω

u(x, t)Ψ(x)dx∫
Ω

Ψ(x)dx
, t ≥ t1.

Theorem 4. If all conditions of Theorem 2 hold, then each solution of the problem
(E), (B2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of
the problem (E), (B2). Without loss of generality, we assume that u(x, t) > 0 for
(x, t) ∈ Ω× [t0,∞). By the condition (H3) there exists a t1 ≥ t0 such that (4) holds.
Multiplying both sides of equation (E) by Ψ(x), and integrating equation (E) with
respect to x over the domain Ω, we have

d

dt
[p(t)

d

dt

∫
Ω

u(x, t)Ψ(x)dx](31)

= α(t)
∫

Ω

∆u(x, t)Ψ(x)dx +
∫

Ω

∫ b

a

β(t, ξ)∆u[x, h(t, ξ)]Ψ(x)dσ(ξ)dx

−
∫

Ω

∫ b

a

q(x, t, ξ)f(u[x, g(t, ξ)])Ψ(x)dσ(ξ)dx.

Using Green′s formula and (B2), we obtain∫
Ω

∆u(x, t)Ψ(x)dx =
∫

∂Ω

(Ψ(x)
∂u

∂N
− u

∂Ψ(x)
∂N

)ds +
∫

Ω

u∆Ψ(x)dx(32)

= −λ1

∫
Ω

u(x, t)Ψ(x)dx, t ≥ t1,

and ∫
Ω

∫ b

a

β(t, ξ)∆u[x, h(t, ξ)]Ψ(x)dσ(ξ)dx(33)

=
∫ b

a

β(t, ξ)
∫

Ω

∆u[x, h(t, ξ)]Ψ(x)dxdσ(ξ)

= −λ1

∫ b

a

β(t, ξ)
∫

Ω

u[x, h(t, ξ)]Ψ(x)dxdσ(ξ), t ≥ t1,

where λ1 is the smallest eigenvalue of problem (28)-(29). Using Jensen′s inequality
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and (H2), we have∫
Ω

∫ b

a

q(x, t, ξ)f(u[x, g(t, ξ)])Ψ(x)dσ(ξ)dx(34)

=
∫ b

a

∫
Ω

q(x, t, ξ)f(u[x, g(t, ξ)])Ψ(x)dxdσ(ξ)

≥
∫ b

a

Q(t, ξ)
∫

Ω

f(u[x, g(t, ξ)])Ψ(x)dxdσ(ξ)

≥
∫ b

a

Q(t, ξ)
[ ∫

Ω

Ψ(x)dx · f
(∫

Ω
u[x, g(t, ξ)]Ψ(x)dx∫

Ω
Ψ(x)dx

)]
dσ(ξ), t ≥ t1.

Therefore, from (31)-(34), we obtain for t ≥ t1

(p(t)U ′(t))′ + λ1α(t)U(t) + λ1

∫ b

a

β(t, ξ)U [h(t, ξ)]dσ(ξ)(35)

+
∫ b

a

Q(t, ξ)f(U [g(t, ξ)])dσ(ξ) ≤ 0.

In view of (H2) and (4), inequality (35) yields

(10) (p(t)U ′(t))′+
∫ b

a

Q(t, ξ)f(U [g(t, ξ)])dσ(ξ) ≤ 0.

The remainder of the proof is similar to that of Theorem 2. �

The following theorem is immediate from Theorem 3 and 4.

Theorem 5. If all conditions of Theorem 3 hold, then every solution of the problem
(E), (B2) is oscillatory in G.
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