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ABSTRACT. In this paper, we extend the result of Ram [3] and also study the L*-
convergence of the r* derivative of cosine series.

1. Introduction

Consider cosine series
a o0
(1.1) ?O +Zak cos kx.
k=1
Let the partial sum of (1.1) be denoted by S,(z) and f(z) = lim S,(z). Further,

let f7(z) = lim ST (z) where S”(z) represents 7" derivative of S,,(x).
n—oo

Definition ([6]). A null sequence {ay} is said to belong to class S if there exists a
sequence { Ay} such that

(1.2) A 10, k= oo,

(1.3) D A < o,
k=0

and

(14) |Aak\ S Ak, YV k.
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Concerning the L!-convergence of Rees-Stanojevic sums [4]

(1.5) gn(x) = %z": Aay + X":Z”: Aa; coskz.
k=0

k=1j=k
Ram [3] proved the following result:

Theorem A. If (1.1) belongs to class S. Then ||f — gnl||Lr = 0o(1), n — oco.

Recently, Tomovski [7] extended the Sidon class to a new class S,, r = 1,2,3,---
as follows:

Definition. A null sequence {ax} is said to belong to class S, if there exists a
sequence {Ag} such that

(1.6) Ar 10, k— oo,

(1.7) D KA < oo,
k=0

and

(1.8) |Aay| < Ak, V k.

Clearly S,41 C S,, Vr=1,2,3,---.

Note that by Ax | 0, k — oo and Z k" Aj < oo, we have
k=0

Et AL = o(1), k— oo.

For r = 0, this class reduces to class S.

The aim of this paper is to generalize Theorem A for the cosine series with extended
class S,, r =1,2,3,--- of coefficient sequences and also to study the L'-convergence
of the rt" derivative of cosine series.

2. Lemma

The proofs of our results are based on the following lemmas:

Lemma 2.1 ([2]). If |ax| < 1, then

r

where C' is positive absolute constant.

dz < C(n+1),

Z Qar Dk (:Z?)
k=0
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Lemma 2.2. Let {ar} be a sequence of real numbers such that |ai| <1, V k. Then
there exists a constant C' > 0 such that for anyn >0 and r =0,1,2,3,---

r

de < C(n+1)"+

> ax Di(x)
k=0

n
Proof. We note that Z a Di(x) is a cosine trigonometric polynomial of order n.
k=0
Applying first Bernstein’s inequality ([8] , vol. II, p. 11) and then using lemma 2.1,
we have

r

where C' > 0. O

n

> ax Di(x)

k=0

Lemma 2.3 ([5]). ||D;(x)||r = O(n"logn), r =0,1,2,3,---, where D} (x) rep-
resents the " derivative of Dirichlet-Kernel.

3. Results

Theorem 3.1. If (1.1) belongs to class Sy, then ||f — gnllpr = o(1), n — oo.
Proof. Consider,

n

1 n n
gn(z) = 3 Aay + Z Z Aaj cos kx
k=0 k=1j=k

n
= Z ay, cos kx — ap+1Dp(2)
k=1

Thus, lim g,(r) = lim S,(x) = f(z) (since, Dy(z) is bounded in (0,7) and

{ak} € Sr)'

Now, we consider

f(x) — gn(l‘) = Z Q. COS kw + an+1Dn(x)
k=n+1
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Making use of Abel’s transformation and lemma 2.1, we have

/If (z)|dz = /OW i AayDi(z)|dz

k=n-+1
T & Aa
O Jk=n+1
L k. Aa
< /0 > AAkZ: AZ’DL(m) da
k=n+1 i=0
S k
4 k" Aa;
< /0 Z krAA’“Z 1 D;(z)|dx
k=n-+1 1=0
Aa
< r f—y ]
- (n—i—l / kaAAk Dil)) da
n+1
< C Z (k+ 1)1 A4,
k=n+1
(1.6) and (1.7) now imply the conclusion of the Theorem 3.1. O

Corollary. If (1.1) belongs to class S,., r = 1,2,3,--- then ||f — Sullzr =
o(1), n — oo if and only if aplogn = o(1), n — oco.

Proof. Consider,

Hf_SnH = ‘|f_gn+gn_sn”
< Hf_gnH'i_Hgn_SnH
= 11f = gll + llans1 Da(@)]
< \|f—gn\|+|an+1\/0 D, ()] de

Further, ||f — gnl|zr = 0o(1), n — oo (by Theorem 3.1) and ||D,(z)|| = O(log n)
(by Zygmund’s Theorem ([1], p. 458)).
The conclusion of corollary follows. O

Remark. Case r = 0 yields the result of B. Ram [3].

Theorem 3.2. If (1.1) belongs to class Sy, then ||f™ — g, ||p1 = o(1), n — oc.

Proof. Consider,
9n(z) = Sn(z) — ant1Dn(2)
We have then

(3.1) gn"(2) = Sn" () — ant1 Dy (7)
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Where g,," () represents the rt" derivative of g, (z) and D,," () represents the rt"
derivative of Dirichlet kernel. Since {ay} is a null sequence and D,,"(x) is bounded
n (0, ).
Therefore,

lim g,"(2) = lim S,"(z) = /()

For x # 0, it follows from (3.1) that

ff(x) —gn () = Z aik” cos (ij + %) + ant1D," (2)

k=n+1
Making use of Abel’s transformation, we get
(o)
fr(@) = ga"(x) = Y DapDy/(x)
k=n-+1

Now consider,

Z Aap D" (x)| dx

k=n-+1

|
g > Aak

— A D."(z
/0 > AL k' (2)
/0

i @) — g @) e =
0

dz

k=n-+1

IN

IN
O\q
>
=
>>E
3

A
Q
M8 ;
ol
+
i
>
i

(1.6), (1.7) and lemma 2.2 imply the conclusion of the Theorem (3.2). O

Corollary. If (1.1) belongs to class Sy, v = 1,2,3,--- then ||f" — Sp"||px =
o(1), n — oo if and only if a,n” logn = o(1), n — oc.

Proof. Consider,

HfriSHTH = ||fr79nr+gnrfsn‘|
< 17— g™l + llgn” — Sl
= 1 = gu"l| + llansa D’ (@)
< N = ga"ll + lansl / D ()
0
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Since, ||f" — gn"||r = 0o(1), n — oo (by Theorem 3.2) and using lemma 2.3, we
get the conclusion of corollary. (Il
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