The Seifert Matrices of Periodic Links with Rational Quotients

Sang Youl Lee
Department of Mathematics, Pusan National University, Pusan 609-735, Korea
e-mail: sangyoul@pusan.ac.kr
Maeng-Sang Park
Department of Mathematics, Graduate School of Natural Sciences, Pusan National University, Pusan 609-735, Korea
e-mail: msjocund@hanmail.net
Myoungsoo Seo
Department of Mathematics, Pusan National University, Pusan 609-735, Korea
e-mail: myseo@kebi.com

Abstract. In this paper, we characterize the Seifert matrices of p-periodic links whose quotients are 2-bridge links $C\left(2, n_{1},-2, n_{2}, \cdots, n_{r},(-2)^{r}\right)$ and give formulas for the signatures and determinants of the 3 -periodic links of these kind in terms of $n_{1}, n_{2}, \cdots, n_{r}$.

1. Introduction

A link L in S^{3} is called a p-periodic $\operatorname{link}(p \geq 2$ an integer) if there exists an orientation preserving auto-homeomorphism h of S^{3} such that $h(L)=L, h$ is of order p and the set of fixed points of h is a circle disjoint from L. In this paper, we are interested in a special class of periodic knots and links.

A link in S^{3} is called a p-periodic link with rational quotient if it is obtained as the preimage of one component of a 2 -bridge link in S^{3} by the p-fold branched cyclic covering branched along the other component. In [5], the authors introduced a special kind of Conway's normal form $C\left(2, n_{1},-2, n_{2}, \cdots, n_{r},(-1)^{r} 2\right)$ of a 2-bridge link with two components and studied the excellent component of the character variety of periodic knots in S^{3} with rational quotient. In [10], the authors reexamined this presentation to study the Alexander polynomials of 2-bridge links and periodic links in S^{3} with rational quotients in terms of $n_{1}, n_{2}, \cdots, n_{r}$. In [7, 11], the authors gave formulas for the Casson knot invariant and the Δ-unknotting number of p-periodic knots with rational quotients via $n_{1}, n_{2}, \cdots, n_{r}$.

Received October 23, 2006.
2000 Mathematics Subject Classification: 57M25.
Key words and phrases: signature, determinant, Seifert matrix, periodic link, 2-bridge link, tridiagonal matrix.

This work was supported for two years by Pusan National University Research Grant.

The purpose of this paper is to give a characterization of the Seifert matrices of periodic links with rational quotients and to study the properties of numerical invariants of the Seifert matrices. In Section 2, we review presentations of 2 -bridge links and p-periodic links with rational quotients. In Section 3, we show that the Seifert matrices of $(p+1)$-periodic links with rational quotient $C\left(2, n_{1},-2, n_{2}, \cdots, n_{r},(-1)^{r} 2\right)$ is S-equivalent to a $p \times p$ block tridiagonal matrix in which each block is also a $r \times r$ tridiagonal matrix whose entries are completely determined by the integers $n_{1}, n_{2}, \cdots, n_{r}$. In Section 4, we give formulas for the signature and determinant of a 3 -periodic link with rational quotient $C\left(2, n_{1},-2, n_{2}, \cdots, n_{r},(-1)^{r} 2\right)$ in terms of $n_{1}, n_{2}, \cdots, n_{r}$.

2. Periodic links with rational quotients

To each pair (α, β) of two co-prime integers subject to the condition that β is odd and $0<|\beta|<\alpha$, Schubert[14] associated an oriented diagram on the 2 -sphere S^{2} of an oriented 2-bridge $\operatorname{knot}\left(\alpha\right.$ odd) or $\operatorname{link}\left(\alpha\right.$ even) L in S^{3}, now called the Schubert normal form of L and denoted by $S(\alpha, \beta)$, and showed that any (oriented) 2-bridge knots and links in S^{3} can be represented in this way. Two such pairs of integers (α, β) and ($\alpha^{\prime}, \beta^{\prime}$) define an equivalent oriented (resp. unoriented) knot or link if and only if

$$
\alpha=\alpha^{\prime} \text { and } \beta^{ \pm 1} \equiv \beta^{\prime} \bmod 2 \alpha(\text { resp. } \bmod \alpha)
$$

where β^{-1} denotes the integers with the properties $0<\beta^{-1}<2 \alpha$ and $\beta \beta^{-1} \equiv$ $1 \bmod 2 \alpha$.

Let $\left[a_{1}, a_{2}, \cdots, a_{n}\right]$ denote the continued fraction of α / β :

$$
\left[a_{1}, a_{2}, \cdots, a_{n}\right] \equiv a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{a_{n}}}}=\frac{\alpha}{\beta}
$$

Then $L=S(\alpha, \beta)$ has also a diagram $C\left(a_{1}, a_{2}, \cdots, a_{n}\right)$, called Conway normal form of L, as shown in Figure 1, depending on whether n is even or odd [1]. The integral tangles in Figure 1, which are rectangles labeled a_{i}, are the 2-braids with $\left|a_{i}\right|$ crossings as shown in Figure 2. It is well known that $L=S(\alpha, \beta)$ admits a diagram $C\left(2 b_{1}, 2 b_{2}, \cdots, 2 b_{m}\right)$, which is equivalent to $C\left(a_{1}, a_{2}, \cdots, a_{n}\right)[6]$.

It is known [5], [10] that the 2-bridge link $L=S(\alpha, \beta)(\alpha$ even) can also be represented by Conway diagram of the form $C\left(2, n_{1},-2, n_{2}, \cdots, n_{r},(-1)^{r} 2\right)$ as shown in Figure 3. We choose an orientation of the 2-bridge link $C\left(2, n_{1},-2, n_{2}\right.$, $\left.\cdots, n_{r},(-1)^{r} 2\right)$ as shown in Figure 3. Then it is easy to see that the diagram shown in Figure 3 can be deformed to the diagrams in Figure 4 by using Reidemeister moves. Throughout this paper, an oriented 2-bridge link L in S^{3} represented by the Conway normal form $C\left(2, n_{1},-2, n_{2}, \cdots, n_{r},(-1)^{r} 2\right)$ is denoted by $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$.

Figure 1:

Figure 2:

A link L in S^{3} is called a p-periodic $\operatorname{link}(p \geq 2$ an integer) if there exists an orientation preserving auto-homeomorphism h of S^{3} such that $h(L)=L, h$ is of order p and the set $\operatorname{Fix}(h)$ of fixed points of h is a circle disjoint from L. In this case, the link $L /\langle h\rangle \cup \operatorname{Fix}(h)$ in the orbit space $S^{3} /\langle h\rangle \cong S^{3}$ is called the quotient link of L. Let K be an oriented link in S^{3} and U an oriented trivial knot with $K \cap U=\emptyset$. For any integer $p \geq 2$, let $\phi_{U}^{p}: \Sigma^{3} \rightarrow S^{3}$ be a p-fold branched cyclic covering branched along U. Then Σ^{3} is homeomorphic to the 3 -sphere S^{3}. Then $\left(\phi_{U}^{p}\right)^{-1}(K)$ is a p-periodic link in Σ^{3} with $L=K \cup U$ as its quotient link. We give an orientation to $\left(\phi_{U}^{p}\right)^{-1}(K)$ induced by the orientation of K. Note that any periodic knot or link in S^{3} arises in this manner.

Definition 2.1. A link \tilde{L} in S^{3} is called a p-periodic link with rational quotient if it is a p-periodic link whose quotient link is a 2 -bridge link, or equivalently, if there exists a 2-bridge link $L=U_{1} \cup U_{2}$ in S^{3} such that \tilde{L} is equivalent to the preimage $\left(\phi_{U_{2}}^{p}\right)^{-1}\left(U_{1}\right)$ of the component U_{1} of L by a p-fold cyclic covering $\phi_{U_{2}}^{p}: \Sigma^{3} \rightarrow S^{3}$ branched along the component U_{2} of L.

Note that each component U_{1} and U_{2} of L is a trivial knot and they can be interchanged each other by an orientation preserving homeomorphism of

Figure 3:
$S^{3}[13]$. This implies that $\left(\phi_{U_{2}}^{p}\right)^{-1}\left(U_{1}\right)$ is equivalent to $\left(\phi_{U_{1}}^{p}\right)^{-1}\left(U_{2}\right)$. Now let $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]=U_{1} \cup U_{2}$ be an oriented 2-bridge link as shown Figure 4. Then the diagram, $D^{(p)}$, shown in Figure 5 is a canonical oriented p periodic diagram of the oriented p-periodic $\operatorname{link}\left(\phi_{U_{2}}^{p}\right)^{-1}\left(U_{1}\right)$ with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$. In what follows, we shall denote the oriented p-periodic link $\left(\phi_{U_{2}}^{p}\right)^{-1}\left(U_{1}\right)$ by $L^{(p)}$ or $\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]^{(p)}$ for our convenience. Then any p-periodic link with rational quotient can be represented by $\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]^{(p)}$ for some nonzero integers $n_{1}, n_{2}, \cdots, n_{r}[7]$, [10].

3. Seifert matrices

We begin with a brief review of Seifert matrix of a link in S^{3} from Chapter 5 in [13].

A Seifert surface for a link in S^{3} is a connected compact orientable surface embedded in S^{3} with as its boundary L. In [15], Seifert proved the existence of Seifert surface for a link L applying L an algorithm, called Seifert's algorithm, on a diagram of L. Let L be a link and F its Seifert surface. There is an embedding $F \times[-1,1] \rightarrow S^{3}$ such that $b(F \times\{0\})=F$ and $b(F \times\{1\})$ lies on the positive side of F. For any simple closed curve $x \in F$, let $x^{+}=b(x \times\{1\})$ and $x^{-}=b(x \times\{-1\})$. Since $H_{1}(F)$ is a free abelian group of finite rank n and is generated by simple closed oriented curves x_{1}, \cdots, x_{n}, we can define a bilinear form $\phi: H_{1}(F) \times H_{1}(F) \rightarrow \mathbb{Z}$

Figure 4:
by

$$
\phi\left(x_{i}, x_{j}\right)=l k\left(x_{i}, x_{j}^{+}\right), i, j=1,2, \cdots, n
$$

This is called the Seifert pairing or linking form of F. The $n \times n$ matrix $M=\left(m_{i, j}\right)$ defined by

$$
m_{i, j}=\phi\left(x_{i}, x_{j}\right)
$$

is called a Seifert matrix of L associated to F. The Seifert matrix of L depends on the Seifert surface F and the choice of generators of $H_{1}(F)$.

Theorem 3.1([13]). Two Seifert matrices obtained from two equivalent links can be changed from one to the other by applying, a finite number of times, the following two operations Λ_{1} and Λ_{2}, and their inverses:
$\Lambda_{1}: M_{1} \longrightarrow P M_{1} P^{T}$, where P is an invertible matrix with $\operatorname{det} P= \pm 1$ and P^{T} denotes the transpose matrix of P.
$\Lambda_{2}: M_{1} \longrightarrow M_{2}=\left(\begin{array}{ccc}M_{1} & \mathbf{v} & \mathbf{0} \\ \mathbf{0} & 0 & 1 \\ \mathbf{0} & 0 & 0\end{array}\right)$ or $\left(\begin{array}{ccc}M_{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{v} & 0 & 0 \\ \mathbf{0} & 1 & 0\end{array}\right)$,
where \mathbf{v} denotes an arbitrary integral row or column vector, and $\mathbf{0}$ the row or column zero vector.

Two square matrices M and M^{\prime} are said to be S-equivalent if one is obtained from the other by applying the operations Λ_{1}, Λ_{2} and the inverse Λ_{2}^{-1} a finite number of times.

For any real number y, let $\lfloor y\rfloor$ denote the largest integer less than or equal to y.

Theorem 3.2. For given nonzero integers $n_{1}, n_{2}, \cdots, n_{r}(r \geq 1)$ and a positive

Figure 5:
integer $p \geq 1$, let A, B and C be $r \times r$ tridiagonal matrices with integral entries given by

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
\alpha_{1} & \epsilon_{1}-1 & & & \\
& \alpha_{2} & \epsilon_{2}-1 & & \\
& & \ddots & \ddots & \\
& & & \alpha_{r-1} & \epsilon_{r-1}-1 \\
& & & & \alpha_{r}
\end{array}\right] \\
& B=\left[\begin{array}{ccccc}
\beta_{1} & & & \\
-\epsilon_{1} & \beta_{2} & & \\
& -\epsilon_{2} & \ddots & \\
& & \ddots & \beta_{r-1} & \\
& & & -\epsilon_{r-1} & \beta_{r}
\end{array}\right] \\
& C=\left[\begin{array}{ccccc}
-n_{1} & 1-\epsilon_{1} & & \\
\epsilon_{1} & -n_{2} & 1-\epsilon_{2} & \\
& \ddots & \ddots & \ddots & \\
& & \epsilon_{r-2} & -n_{r-1} & 1-\epsilon_{r-1} \\
& & & \epsilon_{r-1} & -n_{r}
\end{array}\right]
\end{aligned}
$$

where $\alpha_{i}=\left\lfloor\frac{n_{i}+1-\epsilon_{i-1}}{2}\right\rfloor, \beta_{i}=\left\lfloor\frac{n_{i}+\epsilon_{i-1}}{2}\right\rfloor$ and $\epsilon_{i}=1$ if $n_{1}+n_{2}+\cdots+n_{i}+i$ is even and $\epsilon_{i}=0$ otherwise. Suppose that $L^{(p+1)}$ is the $(p+1)$-periodic link in S^{3} with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$. Then a Seifert matrix of $L^{(p+1)}$ is
S-equivalent to the $p \times p$ block tridiagonal matrix

$$
M=\left[\begin{array}{cccccc}
C & B & & & & \\
A & C & B & & & \\
& A & C & B & & \\
& & \ddots & \ddots & \ddots & \\
& & & A & C & B \\
& & & & A & C
\end{array}\right]
$$

Proof. Let $D^{(p+1)}$ be the diagram of $L^{(p+1)}$ as shown in Figure 5 and let F be the Seifert surface of $L^{(p+1)}$ obtained by applying Seifert algorithm to $D^{(p+1)}$. Let $\left\{x_{i, j} \mid 1 \leq i \leq p, 1 \leq j \leq r\right\}$ be the set of simple closed curves which represent the generators of $H_{1}(F)$. We assign the clockwise orientation to each curves $x_{i, j}$. For example, see Figure 6. In Figure 6, there are the Seifert surface F of $\vec{C}[[2,1,-2]]^{(3)}$ obtained by applying Seifert algorithm and simple closed curves representing the generators of F. For each 4-tuple (i, j, k, l) with $1 \leq i, k \leq p$ and $1 \leq j, l \leq r$, we

Figure 6:
can calculate that

$$
l k\left(x_{i, j}, x_{k, l}^{+}\right)=\left\{\begin{array}{cl}
-n_{j} & \text { if } k=i, l=j, \tag{3.1}\\
\epsilon_{j-1} & \text { if } k=i, l=j-1, \\
-\epsilon_{j-1} & \text { if } k=i+1, l=j-1, \\
1-\epsilon_{j} & \text { if } k=i, l=j+1, \\
-1+\epsilon_{j} & \text { if } k=i-1, l=j+1 \\
\alpha_{j} & \text { if } k=i-1, l=j \\
\beta_{j} & \text { if } k=i+1, l=j \\
0 & \text { otherwise. }
\end{array}\right.
$$

Consider the simple closed curves $x_{1,1}, x_{1,2}, \cdots, x_{1, r}, x_{2,1}, x_{2,2}, \cdots, x_{2, r}, \cdots$, $x_{p, 1}, x_{p, 2}, \cdots, x_{p, r}$ and let $M^{\prime}=\left(m_{a, b}^{\prime}\right)$ be the $r p \times r p$ Seifert matrix defined by

$$
m_{a, b}^{\prime}=l k\left(x_{i, j}, x_{k, l}^{+}\right)
$$

where $a=r(i-1)+j$ and $b=r(k-1)+l$. We can partition the matrix M^{\prime} into $r \times r$ submatrices of M^{\prime} as follows:

$$
M^{\prime}=\left(M_{i, j}^{\prime}\right), M_{i, j}^{\prime}=\left(m_{k, l}^{\prime \prime}\right)
$$

where $m_{k, l}^{\prime \prime}=m_{r(i-1)+k, r(j-1)+l}^{\prime}$. From (3.1), we can see that

$$
M_{i, j}^{\prime}= \begin{cases}C & \text { if } j=i \\ A & \text { if } j=i-1 \\ B & \text { if } j=i+1 \\ O & \text { otherwise }\end{cases}
$$

where O is the $r \times r$ zero matrix. Hence $M^{\prime}=M$. This completes the proof.
Example 3.3. Let $L^{(3)}$ be the 3 -periodic link with rational quotient $L=$ $\vec{C}[[2,1,-2]]$. Let F be a Seifert surface obtained by applying Seifert algorithm to a diagram as described in Figure 6. Consider the simple closed curves representing the generator of $H_{1}(F)$ as depicted in Figure 6. Then any Seifert matrix M of $L^{(3)}$ is S-equivalent to the matrix of the form:

$$
M=\left[\begin{array}{ccc|ccc}
-2 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & -1 \\
\hline 1 & -1 & 0 & -2 & 1 & 0 \\
0 & 1 & -1 & 0 & -1 & 1 \\
0 & 0 & -1 & 0 & 0 & 2
\end{array}\right]
$$

4. Invariants of Seifert matrices

For a real symmetric matrix A, there exists an invertible matrix P such that $P A P^{T}=B$ is a diagonal matrix. By Sylvester's Theorem in Linear Algebra, the sum of signs of the entries in the diagonal of B, called the signature of A and is denoted by $\sigma(A)$, is independent on the diagonalization. It is well known that two S-equivalent symmetric matrices have the same signature. Now let M be a Seifert matrix of a link L. Then the signature $\sigma(L)$ of L is defined by

$$
\sigma(L)=\sigma\left(M+M^{T}\right)
$$

Note that $\sigma(L)$ is a link invariant [13].
For given nonzero integers $n_{1}, n_{2}, \cdots, n_{r}(r \geq 1)$, let $L^{(p+1)}$ be the $(p+1)$ periodic link in $S^{3}(p \geq 1)$ with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$. Let M be the Seifert matrix of $L^{(p+1)}$ given by Theorem 3.2 above and $S=M+M^{T}$. Then
S is the $p \times p$ symmetric block tridiagonal matrix given by

$$
S=\left[\begin{array}{cccccc}
E & F^{T} & & & & \tag{4.2}\\
F & E & F^{T} & & & \\
& F & E & F^{T} & & \\
& & \ddots & \ddots & \ddots & \\
& & & F & E & F^{T} \\
& & & & F & E
\end{array}\right]
$$

where E and F are $r \times r$ tridiagonal matrices given by

$$
\begin{aligned}
& E=\left[\begin{array}{ccccc}
-2 n_{1} & 1 & & & \\
1 & -2 n_{2} & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 n_{r-1} & 1 \\
& & & 1 & -2 n_{r}
\end{array}\right] \\
& F=\left[\begin{array}{lllll}
n_{1} & -1 & & & \\
& n_{2} & -1 & & \\
& & \ddots & \ddots & \\
& & & n_{r-1} & -1 \\
& & & n_{r}
\end{array}\right]
\end{aligned}
$$

4.1. Signatures of 2-periodic links with rational quotients. For given nonzero integers $n_{1}, n_{2}, \cdots, n_{r}(r \geq 1)$, let $L^{(2)}$ be the 2-periodic link in S^{3} with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$. Let M denote the Seifert matrix of $L^{(2)}$ given by Theorem 3.2 above and set $S=M+M^{T}$. From (4.2), we know that $S=E$. In [7], the authors show that $L^{(2)}$ is the 2 -bridge knot with Conway normal form $C\left(-2 n_{1},-2 n_{2}, \ldots,-2 n_{r}\right)$. For each $k=1,2, \cdots, r$, we define a rational number $\langle k\rangle$ by

$$
\langle k\rangle=\left\{\begin{array}{cl}
-2 n_{1} & \text { if } k=1, \\
-2 n_{k}-\frac{1}{\langle k-1\rangle} & \text { if } k=2,3, \cdots, r .
\end{array}\right.
$$

We know that all $\langle k\rangle$ is not equal to zero. We can calculate that

$$
S_{2}=V D V^{T}
$$

where D is the diagonal matrix with diagonal entries $\langle 1\rangle,\langle 2\rangle, \cdots,\langle r\rangle$ and V is the
$r \times r$ tridiagonal matrices given by

$$
V=\left[\begin{array}{cccccc}
1 & & & & & \\
\frac{1}{\langle 1\rangle} & 1 & & & & \\
& \frac{1}{\langle 2\rangle} & 1 & & & \\
& & \ddots & \ddots & & \\
& & & \frac{1}{\langle r-2\rangle} & 1 & \\
& & & & \frac{1}{\langle r-1\rangle} & 1
\end{array}\right]
$$

Since all n_{k} are nonzero, it follows that $0<\left|\frac{1}{\langle k-1\rangle}\right|<1$ and hence the sign of $\langle k\rangle$ is opposite to the sign of n_{k}. Therefore the signature of 2-periodic link $L^{(2)}$ with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$ is given by

$$
\begin{equation*}
\sigma\left(L^{(2)}\right)=-\sum_{i=1}^{r} \frac{n_{i}}{\left|n_{i}\right|} . \tag{4.3}
\end{equation*}
$$

4.2. Signatures of 3 -periodic links with rational quotients. For given nonzero integers $n_{1}, n_{2}, \cdots, n_{r}(r \geq 1)$, let $L^{(3)}$ be the 3-periodic link in S^{3} with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$. Let M denote the Seifert matrix of $L^{(3)}$ given by Theorem 3.2 above and set $S=M+M^{T}$. From (4.2), we know that S is given by

$$
S=\left[\begin{array}{cc}
E & F^{T} \\
F & E
\end{array}\right]
$$

For given nonzero integers $n_{1}, n_{2}, \cdots, n_{r}$, we define the rational numbers $d_{1}, d_{2}, \cdots, d_{r}, w_{1}, w_{2}, \cdots, w_{r-2}$ by

$$
\begin{aligned}
d_{1} & =-\frac{3 n_{1}}{2}+\frac{1}{2 n_{2}} \\
d_{2} & =\frac{1}{2 n_{1}}-\frac{3 n_{2}}{2}+\frac{1}{2 n_{3}}, \\
d_{i} & =\frac{1}{2 n_{i-1}}-\frac{3 n_{i}}{2}+\frac{1}{2 n_{i+1}}-\frac{1}{4 n_{i-1}^{2} d_{i-2}}, i=3,4, \cdots, r-1, \\
d_{r} & =\frac{1}{2 n_{r-1}}-\frac{3 n_{r}}{2}-\frac{1}{4 n_{r-1}^{2} d_{r-2}} \\
w_{j} & =\frac{\tau_{j}}{2 n_{j+1} d_{j}}, j=1,2, \cdots, r-2
\end{aligned}
$$

where $\tau_{j}=-1$ if $j-1 \equiv 0(\bmod 3)$ and $\tau_{j}=1$ otherwise. Note that if $d_{i}=0$, then w_{j} and d_{j+2} are not defined for all $j=i, i+1, \cdots, r-2$.
Thmorem 4.1. Let $n_{1}, n_{2}, \cdots, n_{r}$ be given nonzero $\operatorname{integers}(r \geq 1)$ and let $L^{(3)}$
be the 3-periodic link in S^{3} with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right.$. Let M be the Seifert matrix of $L^{(3)}$ given by Theorem 3.2 above and set $S=M+M^{T}$. Suppose that $d_{i} \neq 0$ for all $i=1,2, \cdots, r$. Then there exists an invertible matrix P such that $\operatorname{det} P= \pm 1$ and

$$
S=P D P^{T}
$$

where D is the $2 r \times 2 r$ diagonal matrix with diagonal entries $-2 n_{1},-2 n_{2}, \cdots,-2 n_{r}$, $d_{1}, d_{2}, \cdots, d_{r}$.
Proof. Let D_{1} and D_{2} be the $r \times r$ diagonal matrices with diagonal entries $-2 n_{1},-2 n_{2}, \cdots,-2 n_{r}$ and $d_{1}, d_{2}, \cdots, d_{r}$, respectively, and let $G=\left(g_{i j}\right)$ be the $r \times r$ tridiagonal matrix given by

$$
g_{i j}=\left\{\begin{array}{cl}
-n_{i} & \text { if } j=i, \\
-1 & \text { if } j=i+1 \text { and } i \not \equiv 0(\bmod 3), \\
1 & \text { if } j=i+1 \text { and } i \equiv 0(\bmod 3), \\
1 & \text { if } j=i-1 \text { and } j \not \equiv 0(\bmod 3), \\
-1 & \text { if } j=i-1 \text { and } j \equiv 0(\bmod 3), \\
0 & \text { otherwise. }
\end{array}\right.
$$

Then $D=D_{1} \oplus D_{2}$ and we have that

$$
\left[\begin{array}{ll}
U_{1} & U_{3} \tag{4.4}\\
U_{2} & U_{1}
\end{array}\right] S\left[\begin{array}{ll}
U_{1} & U_{3} \\
U_{2} & U_{1}
\end{array}\right]^{T}=\left[\begin{array}{cc}
D_{1} & G^{T} \\
G & D_{1}
\end{array}\right]
$$

where $U_{3}=U_{1}-U_{2}, U_{1}=\left(u_{i j}\right)$ and $U_{2}=\left(v_{i j}\right)$ are $r \times r$ diagonal matrices with entries

$$
u_{i j}= \begin{cases}1 & \text { if } i=j \text { and } i \not \equiv 0(\bmod 3) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
v_{i j}= \begin{cases}1 & \text { if } i=j \text { and } i \not \equiv 1(\bmod 3) \\ 0 & \text { otherwise }\end{cases}
$$

Now let $W=\left(w_{i j}\right)$ be the $r \times r$ matrix given by

$$
w_{i j}=\left\{\begin{array}{cl}
1 & \text { if } j=i \\
w_{j} & \text { if } j=i-2 \\
0 & \text { otherwise }
\end{array}\right.
$$

By elementary calculations, we obtain that

$$
D_{1}=G D_{1}^{-1} G^{T}+W D_{2} W^{T}
$$

Hence it follows that

$$
\left[\begin{array}{cc}
D_{1} & G^{T} \tag{4.5}\\
G & D_{1}
\end{array}\right]=\left[\begin{array}{cc}
I & O \\
G D_{1}^{-1} & W
\end{array}\right]\left[\begin{array}{cc}
D_{1} & O \\
O & D_{2}
\end{array}\right]\left[\begin{array}{cc}
I & O \\
G D_{1}^{-1} & W
\end{array}\right]^{T}
$$

From (4.4) and (4.5), we have $S=P D P^{T}$, where

$$
P=\left[\begin{array}{ll}
U_{1} & U_{3} \\
U_{2} & U_{1}
\end{array}\right]^{-1}\left[\begin{array}{cc}
I & O \\
G D_{1}^{-1} & W
\end{array}\right]
$$

This completes the proof.
Corollary 4.2. Let $n_{1}, n_{2}, \cdots, n_{r}$ be given nonzero $\operatorname{integers}(r \geq 1)$ and let $L^{(3)}$ be the 3-periodic link in S^{3} with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$. Suppose that $d_{i} \neq 0$ for all $i=1,2, \cdots, r$. Then

$$
\sigma\left(L^{(3)}\right)=\sum_{i=1}^{r}\left(\frac{d_{i}}{\left|d_{i}\right|}-\frac{n_{i}}{\left|n_{i}\right|}\right)
$$

Proof. The result follows from Theorem 4.1 at once.
Corollary 4.3. Let $n_{1}, n_{2}, \cdots, n_{r}$ be given nonzero integers $(r \geq 1)$ and let $L^{(3)}$ be the 3-periodic link in S^{3} with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$. Suppose that $\left|n_{i} n_{i+1} n_{i+2} n_{i+3}\right| \geq 2$ for each $i=1,2, \cdots, r-3$. Then the signature $\sigma\left(L^{(3)}\right)$ of $L^{(3)}$ is given by

$$
\sigma\left(L^{(3)}\right)=-2 \sum_{i=1}^{r} \frac{n_{i}}{\left|n_{i}\right|}=2 \sigma\left(L^{(2)}\right)
$$

Proof. We will claim that the sign of d_{i} is opposite of the sign of n_{i} and the absolute value of d_{i} is greater than or equal to $\frac{1}{4}$ for all $i=1,2, \cdots, r$.

Since n_{1} and n_{2} are nonzero integers and $d_{1}=-\frac{3 n_{1}}{2}+\frac{1}{2 n_{2}}$, the sign of d_{1} is opposite of the sign of n_{1} and

$$
\left|d_{1}\right| \geq \frac{3}{2}-\frac{1}{2}=1 \geq \frac{1}{4}
$$

Since n_{1}, n_{2} and n_{3} are nonzero integers and $d_{2}=\frac{1}{2 n_{1}}-\frac{3 n_{2}}{2}+\frac{1}{2 n_{3}}$, the sign of d_{2} is opposite of the sign of n_{2} and

$$
\left|d_{2}\right| \geq \frac{3}{2}-\frac{1}{2}-\frac{1}{2}=\frac{1}{2} \geq \frac{1}{4}
$$

Suppose that the sign of d_{i} is opposite of the sign of n_{i} and $\left|d_{i}\right| \geq \frac{1}{4}$ for all $i=1,2, \cdots, k$. Now we claim that the sign of d_{k+1} is opposite of the sign of n_{k+1} and $\left|d_{k+1}\right| \geq \frac{1}{4}$. We recall that, for $2 \leq k \leq r-2$,

$$
d_{k+1}=\frac{1}{2 n_{k}}-\frac{3 n_{k+1}}{2}+\frac{1}{2 n_{k+2}}-\frac{1}{4 n_{k}^{2} d_{k-1}}
$$

If $\left|n_{k+1}\right| \geq 2$, then $\left|\frac{3 n_{k+1}}{2}\right| \geq 3$. Since $\left|d_{k-1}\right| \geq \frac{1}{4},\left|\frac{1}{2 n_{k}}+\frac{1}{2 n_{k+2}}-\frac{1}{4 n_{k}^{2} d_{k-1}}\right| \leq$ $\frac{1}{2}+\frac{1}{2}+1=2$. Hence the sign of d_{k+1} is opposite of the sign of n_{k+1} and

$$
\left|d_{k+1}\right| \geq 3-2=1 \geq \frac{1}{4}
$$

If $\left|n_{k+1}\right|=1$ and $\left|n_{k}\right| \geq 2$, then $\left|\frac{3 n_{k+1}}{2}\right|=\frac{3}{2}$ and $\left|\frac{1}{2 n_{k}}+\frac{1}{2 n_{k+2}}-\frac{1}{4 n_{k}^{2} d_{k-1}}\right|$ $\leq \frac{1}{4}+\frac{1}{2}+\frac{1}{4}=1$. Hence the sign of d_{k+1} is opposite of the sign of n_{k+1} and

$$
\left|d_{k+1}\right| \geq \frac{3}{2}-1=\frac{1}{2} \geq \frac{1}{4}
$$

If $\left|n_{k+1}\right|=1,\left|n_{k}\right|=1$ and $\left|n_{k-1}\right| \geq 2$, then $\left|d_{k-1}\right| \geq 1$. Since $\left|\frac{3 n_{k+1}}{2}\right|=\frac{3}{2}$ and $\left|\frac{1}{2 n_{k}}+\frac{1}{2 n_{k+2}}-\frac{1}{4 n_{k}^{2} d_{k-1}}\right| \leq \frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{5}{4}$, the sign of d_{k+1} is opposite of the sign of n_{k+1} and

$$
\left|d_{k+1}\right| \geq \frac{3}{2}-\frac{5}{4}=\frac{1}{4}
$$

If $\left|n_{k+1}\right|=1,\left|n_{k}\right|=1$ and $\left|n_{k-1}\right|=1$, then $\left|n_{k-2}\right| \geq 2$ and $\left|n_{k+2}\right| \geq 2$. If $4 \leq k \leq r-2$, then $\left|d_{k-1}\right| \geq\left|\frac{3 n_{k-1}}{2}\right|-\left|\frac{1}{2 n_{k-2}}+\frac{1}{2 n_{k}}-\frac{1}{4 n_{k-2}^{2} d_{k-3}}\right| \geq \frac{3}{2}-\left(\frac{1}{4}+\frac{1}{2}+\frac{1}{4}\right)=\frac{1}{2}$ and hence $\left|\frac{1}{2 n_{k}}+\frac{1}{2 n_{k+2}}-\frac{1}{4 n_{k}^{2} d_{k-1}}\right| \leq \frac{1}{2}+\frac{1}{4}+\frac{1}{2}=\frac{5}{4}$. If $k=3$, then $\left|d_{k-1}\right|=\left|d_{2}\right| \geq \frac{1}{2}$ and hence $\left|\frac{1}{2 n_{k}}+\frac{1}{2 n_{k+2}}-\frac{1}{4 n_{k}^{2} d_{k-1}}\right| \leq \frac{1}{2}+\frac{1}{4}+\frac{1}{2}=\frac{5}{4}$. If $k=2$, then $\left|d_{k-1}\right|=\left|d_{1}\right| \geq 1$ and hence $\left|\frac{1}{2 n_{k}}+\frac{1}{2 n_{k+2}}-\frac{1}{4 n_{k}^{2} d_{k-1}}\right| \leq \frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1$. Since $\left|\frac{3 n_{k+1}}{2}\right|=\frac{3}{2}$, the sign of d_{k+1} is opposite of the sign of n_{k+1} and

$$
\left|d_{k+1}\right| \geq \frac{3}{2}-\frac{5}{4}=\frac{1}{4}
$$

If $k+1=r$, then we can also see that the sign of d_{r} is opposite of the sign of n_{r} and $\left|d_{r}\right| \geq \frac{1}{4}$ by the similar argument.

Therefore d_{i} is nonzero and the sign of d_{i} is opposite of the sign of n_{i} for all $i=1,2, \cdots, r$. From Corollary 4.2, the signature $\sigma\left(L^{(3)}\right)$ of $L^{(3)}$ is given by

$$
\sigma\left(L^{(3)}\right)=-2 \sum_{i=1}^{r} \frac{n_{i}}{\left|n_{i}\right|}
$$

From (4.3), $\sigma\left(L^{(3)}\right)=2\left(-\sum_{i=1}^{r} \frac{n_{i}}{\left|n_{i}\right|}\right)=2 \sigma\left(L^{(2)}\right)$. This completes the proof.
Corollary 4.4. Let $n_{1}, n_{2}, \cdots, n_{r}$ be given nonzero integers $(r \geq 1)$ and let $L^{(3)}$ be the 3-periodic link in S^{3} with rational quotient $L=\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$. Suppose that $d_{i} \neq 0$ for all $i=1,2, \cdots, r$. Then

$$
\operatorname{det}\left(L^{(3)}\right)=\left|\Delta_{L^{(3)}}(-1)\right|=2^{r}\left|n_{1} n_{2} \cdots n_{r} d_{1} d_{2} \cdots d_{r}\right|
$$

Proof. The result follows from Theorem 4.1 at once.
Example 4.5. The symmetric matrix S of the 3-periodic link $L^{(3)}$ with rational quotient $L=\vec{C}[[2,1,-2]]$ is given by

$$
S=\left[\begin{array}{ccc|ccc}
-4 & 1 & 0 & 2 & 0 & 0 \\
1 & -2 & 1 & -1 & 1 & 0 \\
0 & 1 & 4 & 0 & -1 & -2 \\
\hline 2 & -1 & 0 & -4 & 1 & 0 \\
0 & 1 & -1 & 1 & -2 & 1 \\
0 & 0 & -2 & 0 & 1 & 4
\end{array}\right]
$$

We have that $S=P D P^{T}$, where $D=\operatorname{diag}\left(-4,-2,4,-\frac{5}{2},-\frac{3}{2}, \frac{18}{5}\right)$ and

$$
P=\left[\begin{array}{ccc|ccc}
\frac{1}{2} & -\frac{1}{2} & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{5} & 0 & 1 \\
\hline \frac{1}{2} & \frac{1}{2} & 0 & 1 & 0 & 0 \\
-\frac{1}{4} & -\frac{1}{2} & -\frac{1}{4} & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 0
\end{array}\right] .
$$

This implies that $\sigma\left(L^{(3)}\right)=-2=-2 \sum_{i=1}^{3} \frac{n_{i}}{\left|n_{i}\right|}=2 \sigma\left(L^{(2)}\right)$ (cf. Corollary 4.3) and $\operatorname{det}\left(L^{(3)}\right)=432$.

Remarks 4.6.

(1) In order to generalize Theorem 4.1 for the case $p \geq 4$, we need to diagonalize the symmetric matrix $S=M+M^{T}$ in (4.2) of a p-periodic link with rational quotient $\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$ so that the diagonal entries are completely expressed as the integer $n_{1}, n_{2}, \cdots, n_{r}$. The authors have no such a diagonalization of S and so we leave this an open question.

It should be note that if $\left|n_{i} n_{i+1} n_{i+2} n_{i+3}\right|=1$ for some $i=1,2, \cdots, r-3$, Corollary 4.3 may not holds. For example, if $n_{1}=n_{2}=n_{3}=n_{4}=n_{6}=$ $n_{7}=n_{8}=n_{9}=1$ and $n_{5}=2$, then $d_{9}=0$.
(2) The signatures of more general periodic knots and links in S^{3} have been studied by several authors, for example, see [2], [3], [4], [8], [9], [12].
(3) It is well known that the Alexander polynomial is given by the formula $\Delta_{K}(t) \doteq \operatorname{det}\left(M-t M^{T}\right)$. In [10], with Fox's free differential calculus, Lee and Seo gave a recurrence formula for calculating the Alexander polynomials of 2-bridge links by using a special type of Conway diagram as shown in Figure 3 and the reduced Alexander polynomials of p-periodic links with rational quotient $\vec{C}\left[\left[n_{1}, n_{2}, \cdots, n_{r}\right]\right]$ in terms of $n_{1}, n_{2}, \cdots, n_{r}$ and p.

References

[1] J. H. Conway, An enumeration of knots and links and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf. Oxford) (J. Leech, ed.), Pergamon Press, New York, 1970, 329-358.
[2] C. McA. Gordon and R. A. Litherland, On the signature of a link, Invent. Math., 47(1978), 53-69.
[3] C. McA. Gordon and R. A. Litherland, On the theorem of Murasugi, Pacific J. Math., 82(1979), 69-74.
[4] C. McA. Gordon and R. A. Litherland and K. Murasugi, Signatures of covering links, Canad. J. Math., 33(1981), 381-394.
[5] H. M. Hilden, M. T. Lozano, and J. M. Montesinos-Amilibia, On the character variety of periodic knots and links, Math. Proc. Cambridge Philos. Soc., 129(2000), 477-490.
[6] T. Kanenobu and Y. Miyazawa, 2-bridge link projections, Kobe J. Math., 9(1992), 171-182.
[7] H. J. Jang, S. Y. Lee and M. Seo, Casson knot invariants of periodic knots with rational quotients, J. Knot Theory Ramifications, 16(2007), 439-460.
[8] S. Y. Lee, \mathbb{Z}_{n}-equivalant Goeritz matrices of periodic links, Osaka J. Math., 40(2003), 393-408.
[9] S. Y. Lee and C-Y. Park, On the modified Goeritz matrices of 2-periodic links, Osaka J. Math., 35(1998), 529-537.
[10] S. Y. Lee and M. Seo, Recurrence formulas for the Alexander polynomials of 2-bridge links and their covering links, J. Knot Theory Ramifications, 15(2006), 179-203.
[11] S. Y. Lee and M. Seo, Casson knot invariants of periodic knot with rational quotients II, J. Knot Theory Ramifications(to appear).
[12] K. Murasugi, On the signature of links, Topology, 9(1970), 283-298.
[13] K. Murasugi, Knot theory and its application, Birkhäuser, 1996.
[14] H. Schubert, Knoten mit zwei Brücken, Math Z., 65(1956), 133-170.
[15] H. Seifert, Über das Geschlecht von Knoten, Math. Ann., 110(1934) 571-592.

