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Abstract. By using the weighted averaging techniques, we establish oscillation criteria
for the second order damped quasilinear elliptic differential equation

N∑
i,j=1

Di(aij(x)‖Dy‖p−2Djy) + 〈 b(x), ‖Dy‖p−2Dy 〉 + c(x)f(y) = 0, p > 1.

The obtained theorems include and improve some existing ones for the undamped half-

linear partial differential equation and the semilinear elliptic equation.

1. Introduction

In this paper, we are concerned with the oscillation of the second order damped
quasilinear elliptic differential equation

(1.1)
N∑

i, j=1

Di[ aij(x)‖Dy‖p−2Djy ] + 〈 b(x), ‖Dy‖p−2Dy 〉+ c(x)f(y) = 0

in the exterior domain Ω(r0) := {x ∈ RN : ‖x‖ ≥ r0} for some r0 > 0, where
x = (xi)N

i=1 ∈ Ω(r0) ⊂ RN , N ≥ 2, p > 1, Diy = ∂y/∂xi for all i, Dy = (Diy)N
i=1,

‖ ·‖ and 〈 ·, · 〉 denote the usual Euclidean norm and the usual scalar product in RN ,
respectively.

Throughout this paper, we tacitly assume that the following conditions holds.

(A1) A = (aij(x))N×N is a real symmetric positive define matrix function with
aij ∈ C1+ν

loc (Ω(r0), R) for all i, j, 0 < ν < 1;
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(A2) b(x) = (bi(x))N
i=1 with bi ∈ Cν

loc(Ω(r0),R) for all i, and c ∈ Cν
loc(Ω(r0),R);

(A3) f ∈ C(R,R) ∪C1(R− {0},R) such that yf(y) > 0 and

f ′(y)
|f(y)|(p−2)/(p−1)

≥ ε > 0 for y 6= 0.

By a solution of Eq.(1.1) is meant a function y ∈ C2+ν(Ω(r0),R) with
aij(x)‖Dy‖p−2Djy ∈ C1+ν(Ω(r0), R) which satisfies Eq.(1.1) for all x ∈ Ω(r0).
Regarding the question of existence of solutions of Eq.(1.1), we refer the reader
to the monograph [2]. In what follows, our attention is restricted to those solu-
tions which don’t vanish identically in any neighborhood of ∞. The oscillation is
considered in the usual sense, i.e., a solution y of Eq.(1.1) is said to be oscillatory
if it has arbitrarily large zeros, i.e., the set {x ∈ RN : y(x) = 0} is unbounded.
Equation (1.1) is said to be oscillatory if every solution (if any exists) is oscillatory.
Conversely, Equation (1.1) is nonoscillatory if there exists a solution which is not
oscillatory.

The partial differential equation (PDE) with p−Laplacian have applications in
various physical and biological problems – in the study of non-Newtonian fluids,
in the glaciology and slow diffusion problems. For more detailed discussion about
applications of PDE with p−Laplacian, see [2].

The special cases of equation (1.1) are the undamped half-linear PDE

(1.2) div (‖Dy‖p−2Dy) + c(x)|y|p−2y = 0,

and the damped half-linear PDE

(1.3) div (‖Dy‖p−2Dy ) + 〈 b(x), ‖Dy‖p−2Dy〉+ c(x)|y|p−2y = 0.

In the qualitative theory of nonlinear PDE, one of important themes is to de-
termine whether or not solutions of the equation under consider are oscillatory. In
the last decade, the oscillation of Eq.(1.2) has received much attention and exten-
sively studied by many authors, see, eg., [3], [5]-[8], [11], [13]-[16] and the references
therein. Particularly, in [11], Usami used the Riccati technique due to Noussair
and Swanson [10], and extended Fite-Wintner [4], [12] to Eq.(1.2). Very recently,
by using Riccati inequality method, Mař́ık [9] has obtained some oscillation results
for Eq.(1.3), which seems to be the first paper to study the oscillation of Eq.(1.3).
However, those known results can not be applied to Eq.(1.1).

Motivated by the ideas of Mař́ık [9], Noussair and Swanson [10], Usami [11],
in this paper, by using the weighted averaging techniques in Coles [1], we establish
some oscillation criteria for Eq.(1.1). Particularly, when p = 2 in Eq.(1.1), we give
a sharp oscillation criterion for it. The results obtained here include and improve
the ones in [10], [11] and [15], and are essentially new ever for Eqs. (1.2) and (1.3).
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2. Notations and lemmas

The following notations will be used throughout this paper. Let Φ(r, r0) denote
the class of all positive and locally integrable functions but not integrable functions
which contains all bounded functions for all r ≥ r0. For arbitrary given functions
φ ∈ Φ(r, r0) and θ ∈ C([r0,∞),R), we define

C1(x) = c(x)− 1
p

( 2
εq

)p−1 ‖A‖p

λp−1
min (x)

‖b(x)A−1‖p,

C2(x) = c(x)− 1
2ε
λmax(x)‖b(x)A−1‖2,

CMi(r) =
∫

Sr

Ci(x)dσ, i = 1, 2, α(r, b) =
∫ r

b

φ(s)ds,

Q(r, b; θ) =
1

α(r, b)

∫ r

b

φ(s)
∫ r

b

θ(u) du ds,

where λmax(x) and λmin(x) denote the largest and smallest eigenvalue of the matrix

A, respectively, ‖A‖ = [
N∑

i,j=1

a2
ij(x)]

1/2 denotes the norm of the matrix A, Sr =

{x ∈ RN : ‖x‖ = r}, σ represents the measure on Sr, and q denotes the conjugate
number to p, i.e., 1/p+ 1/q = 1.

Members of the set Φ will be called weighted functions [1].

Before we state our main theorems, we need the following technical lemmas. The
first one is new, the second is a modified version of Lemma 1 in [10] for semiliner
equations.

Lemma 2.1. Suppose that (1.1) has a nonoscillatory solution y = y(x) 6= 0 for all
x ∈ Ω(r1), (r1 ≥ r0). Then the N -dimensional vector Riccati function W (x) is well
defined on Ω(r1) by

(2.1) W (x) = (Wi(x))N
i=1, Wi(x) =

1
f(y)

( N∑
j=1

aij(x)‖Dy‖p−2Djy
)
,

and satisfies the following partial Riccati-type inequality

(2.2) divW (x) ≤ −C1(x)−
ε

2
λmin(x)
‖A‖q

‖W (x)‖q.

Proof. Without loss of generality let us consider that y = y(x) > 0 on Ω(r1).
Differentiation of Wi(x) with respect to xi gives

DiWi(x) = − f ′(y)
f2(y)

Diy
( N∑

j=1

aij(x)‖Dy‖p−2Djy
)
+

1
f(y)

Di

( N∑
j=1

aij(x)‖Dy‖p−2Djy
)
,
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for i = 1, · · · , N . Summation over i and use of (1.1) lead to

(2.3) divW (x) = −c(x)− f ′(y)
f2(y)

‖Dy‖p−2(Dy)TA(Dy)−
〈
b(x),

‖Dy‖p−2Dy

f(y)

〉
.

Note that

‖W (x)‖ ≤ 1
f(y)

‖A‖‖Dy‖p−1, (Dy)TA(Dy) ≥ λmin(x)‖Dy‖2.

This, together (2.3) with (A3), implies that

divW (x) ≤ −c(x)− f ′(y)
|f(y)|(p−2)/(p−1)

(2.4)

× λmin(x)
‖A‖q

‖W (x)‖q − 〈 b(x)A−1, W (x) 〉

≤ −c(x)− ελmin(x)
‖A‖q

‖W (x)‖q − 〈 b(x)A−1,W (x) 〉.

Application of Young’s inequality yields

ελmin(x)
‖A‖q

‖W (x)‖q + 〈 b(x)A−1,W (x) 〉(2.5)

=
εq

2
λmin(x)
‖A‖q

[1
q
‖W (x)‖q +

2
εq

‖A‖q

λmin(x)
〈 b(x)A−1,W (x) 〉+

1
q
‖W (x)‖q

]
≥ −1

p

( 2
εq

)p−1 ‖A‖p

λp−1
min (x)

‖b(x)A−1‖p +
ε

2
λmin(x)
‖A‖q

‖W (x)‖q.

Combining (2.4) and (2.5), we get that (2.2) holds. �

Let p = 2 in Eq.(1.1). Eq.(1.1) reduces the following damped semilinear equa-
tion

(2.6)
N∑

i, j=1

Di[ aij(x)Djy ] + 〈b(x), Dy 〉+ c(x)f(y) = 0.

Lemma 2.2. Suppose that (2.6) has a nonoscillatory solution y = y(x) 6= 0 for all
x ∈ Ω(r1), (r1 ≥ r0). Then the N -dimensional vector Riccati function W (x) is well
defined on Ω(r1) by

(2.7) W (x) = (Wi(x))N
i=1, Wi(x) =

1
f(y)

( N∑
j=1

aij(x)Djy
)
,

and satisfies the following partial Riccati-type inequality

(2.8) divW (x) ≤ −C2(x)−
ε

2λmax(x)
‖W (x)‖2.
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Proof. Similar to the proof of Lemma 2.1, we get

(2.9) divW (x) = −c(x)− f ′(y)(W
T
A−1W )(x)−

〈
b(x),

Dy

f(y)

〉
.

Note that
(W

T
A−1W )(x) ≥ 1

λmax(x)
‖W (x)‖2,

this, together (2.9) with (A3), implies that

(2.10) divW (x) ≤ −c(x)− ε

λmax(x)
‖W (x)‖2 − 〈b(x)A−1, W (x)〉.

By Young’s inequality,

ε

λmax(x)
‖W (x)‖2 + 〈 b(x)A−1,W (x) 〉(2.11)

=
ε

λmax(x)

[1
2
‖W (x)‖2 +

λmax(x)
ε

〈 b(x)A−1,W (x) 〉+
1
2
‖W (x)‖2

]
≥ ε

2λmax(x)
‖W (x)‖2 − λmax(x)

2ε
‖b(x)A−1‖2.

Combining (2.10) and (2.11), we get that (2.8) holds. �

3. Main results

Theorem 3.1. Suppose that there exist ϕ ∈ C1([r0,∞),R+), φ ∈ Φ(r, r0), λ ∈
C([r0,∞), R+), and l > 1 such that

(3.1) min
‖x‖=r

λmin(x)
‖A‖q

≥ λ(r), r ≥ r0,

(3.2)
∫ ∞

r0

φ(s)αµ(s, b)
β1(s, b)

ds = ∞, 0 ≤ µ < q − 1,

and

(3.3) lim
r→∞

Q(r, b; Θ1) = ∞, b ≥ r0,

where

h1(r) =
ε

2
λ(r)[ωNr

N−1ϕ(r)]1/(1−p), β1(r, b) =
(∫ r

b

φp(s)h1−p
1 (s)ds

)1/(p−1)

,

Θ1(r) = ϕ(r)CM1(r)−
1
p

( l
q

)p−1∣∣∣ϕ ′(r)
ϕ(r)

∣∣∣ph1−p
1 (r),
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and ωN =
∫

S1
dσ = 2πN/2/Γ(N/2) denotes the surface measure of unit sphere.

Then Eq.(1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of Eq.(1.1). Without loss of
generality we assume that y(x) > 0 for x ∈ Ω(r1) for some sufficient large r1 ≥ r0.
Hence the N−dimensional vector Riccati function W (x) is well defined on Ω(r1) by
(2.1). It follows from Lemma 2.1 that (2.2) holds. Put

(3.4) Z(r) = ϕ(r)
∫

Sr

〈W (x), υ(x)〉dσ,

where υ(x) = x/‖x‖, x 6= 0, denotes the outward unit normal. By the Green
formula in (3.4), noting that (2.2) and (3.1), we have

Z ′(r) =
ϕ′(r)
ϕ(r)

Z(r) + ϕ(r)
∫

Sr

divW (x)dσ(3.5)

≤ ϕ′(r)
ϕ(r)

Z(r)− ϕ(r)
[ ∫

Sr

C1(x)dσ +
ε

2
λ(r)

∫
Sr

‖W (x)‖qdσ
]
.

By Hölder’s inequality,

|Z(r)| ≤ ϕ(r)
∫

Sr

‖W (x)‖ ‖υ(x)‖dσ

≤ ϕ(r)
( ∫

Sr

dσ
)1/p( ∫

Sr

‖W (x)‖qdσ
)1/q

= ϕ(r)
(
ωNr

N−1
)1/p( ∫

Sr

‖W (x)‖qdσ
)1/q

,

and equivalently,∫
Sr

‖W (x)‖qdσ ≥ ϕ−q(r)(ωNr
N−1)1/(1−p)|Z(r)|q,

which, together with (3.5), implies that

Z ′(r) ≤ −ϕ(r)CM1(r) +
ϕ′(r)
ϕ(r)

Z(r)(3.6)

−ε
2
λ(r)

[
ωNr

N−1ϕ(r)
]1/(1−p)

|Z(r)|q

= −ϕ(r)CM1(r) +
ϕ′(r)
ϕ(r)

Z(r)− h1(r)|Z(r)|q.

By Young’s inequality,

ϕ′(r)
ϕ(r)

Z(r)− h1(r)|Z(r)|q ≤ q h1(r)
l

[ l

q h1(r)

∣∣∣ϕ′(r)
ϕ(r)

∣∣∣|Z(r)| − 1
q
|Z(r)|q − l

l∗q
|Z(r)|q

]
≤ 1

p

(
l

q

)p−1 ∣∣∣ϕ′(r)
ϕ(r)

∣∣∣ph1−p
1 (r)− 1

l∗
h1(r)|Z(r)|q,
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where l∗ is the conjugate number to l, i.e., 1/l + 1/l∗ = 1, which, together with
(3.6), follows that

Z ′(r) ≤ −ϕ(r)CM1(r) +
1
p

( l
q

)p−1∣∣∣ϕ′(r)
ϕ(r)

∣∣∣ph1−p
1 (r)− 1

l∗
h1(r)|Z(r)|q(3.7)

= −Θ1(r)−
1
l∗
h1(r)|Z(r)|q.

Integrating (3.7) from b to r, r ≥ b ≥ r1, we have

Z(r) +
1
l∗

∫ r

b

h1(s)|Z(s)|qds ≤ Z(b)−
∫ r

b

Θ1(s)ds.

Multiplying the above by φ(r) and integrating it from b to r, we get∫ r

b

φ(s)Z(s)ds+
1
l∗

∫ r

b

φ(s)
∫ s

b

h1(u)|Z(u)|q duds ≤
[
Z(b)−Q(r, b; Θ1)

]
α(r, b).

Note that (3.3), there exists a b1 ≥ b such that

Z(b)−Q(r, b; Θ1) < 0 for all r ≥ b1.

Thus, for every r ≥ b1,

H(r) :=
1
l∗

∫ r

b

φ(s)
∫ s

b

h1(u)|Z(u)|qduds ≤ −
∫ r

b

φ(s)Z(s)ds.

Since H is nonnegative, then

(3.8) Hq(r) ≤
( ∫ r

b

φ(s)|Z(s)|ds
)q

, r ≥ b1.

By the Hölder inequality,( ∫ r

b

φ(s)|Z(s)| ds
)q

(3.9)

≤
( ∫ r

b

φp(s)h1−p
1 (s) ds

)1/(p−1)( ∫ r

b

h1(s)|Z(s)|q ds
)

= l∗
( ∫ r

b

φp(s)h1−p
1 (s)ds

)1/(p−1)H ′(r)
φ(r)

.

Therefore, for all r ≥ b1,

H(r) =
1
l∗

∫ r

b

φ(s)
∫ s

b

h1(u)|Z(u)|q du ds

≥ 1
l∗

( ∫ b1

b

h1(s)|Z(s)|q ds
)( ∫ r

b

φ(s) ds
)

=
C

l∗
α(r, b).
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where C =
∫ b1

b
h1(s)|Z(s)|q ds. Form (3.8) and (3.9), for all r ≥ b1 and some µ,

0 ≤ u < q − 1, we get

Cµφ(r)
( ∫ r

b

φp(u)h1−p
1 (u) du

)1/(1−p)

αµ(r, b) ≤ (l∗)µ+1Hµ−q(s)H ′(r).

Integrating the above from b1 to r, we obtain

Cµ

∫ r

b1

φ(s)αµ(s, b)
β1(s, b)

ds ≤ (l∗)µ+1

q − 1− µ

1
Hq−1−µ(b1)

<∞, 0 ≤ µ < q − 1,

which contradicts condition (3.2). �

Corollary 3.1. Assume that there exists ϕ ∈ C1([r0,∞),R+) such that

(3.10)
∫ ∞

r0

h1(s) ds =
∫ ∞

r0

Θ1(s) ds = ∞.

Then Eq.(1.1) is oscillatory.

Proof. Let φ(r) = h1(r). It is easy to show that (3.2) and (3.3) hold from (3.10).
Hence, by Theorem 3.1, Eq.(1.1) is oscillatory . �

Remark 3.1. Corollary 3.1 improves Theorem 4 in [11] and Theorem 3.1 in [15].

Next, for Eq. (2.6), we should establish a sharp oscillation theorem which
improve the main results in [10] for undamped semilinear equations.

Theorem 3.2. Suppose that there exist φ ∈ Φ(r, a), η ∈ C1([r0,∞),R+), λ ∈
C([r0,∞), R+) such that

(3.11) λ(r) ≥ max
‖x‖=r

λmax(x), r ≥ r0,

(3.12)
∫ ∞

r0

φ(s)αµ(s, b)
β2(s, b)

ds = ∞, 0 ≤ µ < 1,

and

(3.13) lim
r→∞

Q(r, b; Θ2) = ∞, b ≥ r0,

where

h2(r) =
ε r1−N

2ωNλ(r)ψ(r)
β2(r, b) =

∫ r

b

φ2(s)
h2(s)

ds,

ψ(r) = exp
[
− ε

ωN

∫ r

r0

η(s)s1−N

λ(s)
ds

]
,

Θ2(r) = ψ(r)
[
CM2(r) +

ε η2(r)r1−N

2ωN λ(r)
− η′(r)

]
.
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Then Eq.(2.6) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of Eq.(1.1). Without loss of
generality we assume that y(x) > 0 for x ∈ Ω(r1) for some sufficient large r1 ≥ r0.
Hence the N−dimensional vector Riccati function W (x) is well defined on Ω(r1) by
(2.7). It follows from lemma 2.2 that (2.8) holds. Define

(3.14) Z(r) = ψ(r)
[ ∫

Sr

〈W (x), υ(x) 〉dσ + η(r)
]
.

Using Green’s formula in (3.14), and in view of (2.8) and (3.11), we get

Z ′(r) =
ψ′(r)
ψ(r)

Z(r) + ψ(r)
{∫

Sr

divW (x)dσ + η′(r)
}

(3.15)

≤ ψ′(r)
ψ(r)

Z(r) + ψ(r)
[
−

∫
Sr

C2(x)dσ −
ε

2λ(r)

∫
Sr

‖W (x)‖2 dσ + η′(r)
]

= −ψ(r)[CM2(r)− η′(r)] +
ψ′(r)
ψ(r)

Z(r)− εψ(r)
2λ(r)

∫
Sr

|W (x)|2 dσ.

The Schwartz inequality follows that∫
Sr

|W (x)|2dσ ≥ r1−N

ωN

[ ∫
Sr

〈W (x), υ(x) 〉 dσ
]2

,

which, together with (3.15), implies that

Z ′(r) ≤ −ψ(r)
[
CM2(r)− η′(r)

]
+
ψ′(r)
ψ(r)

Z(r)− εψ(r)r1−N

2ωNλ(r)

[ ∫
Sr

〈W (x), υ(x)〉dσ
]2

= −ψ(r)
[
CM2(r)− η′(r)

]
+
ψ′(r)
ψ(r)

Z(r)− εψ(r)r1−N

2ωNλ(r)

[Z(r)
ψ(r)

− η(r)
]2

= −Θ2(r)− h2(r)Z2(r).

The remainder of the proof is similar to that of Theorem 3.1 and omit the details.
�

Corollary 3.2. Assume that there exists ϕ ∈ C1( [r0,∞),R+ ) such that

(3.16)
∫ ∞

r0

h2(s) ds =
∫ ∞

r0

Θ2(s)ds = ∞.

Then Eq.(2.6) is oscillatory.

Proof. Let φ(r) = h2(r). It is easy to show that (3.12) and (3.13) hold from (3.16),
and therefore Eq.(2.6) is oscillatory from Theorem 3.2. �

Remark 3.2. Corollary 3.2 improves Theorem 4 in [10].
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Corollary 3.3. Assume that there exists ϕ ∈ C1([r0,∞),R+) such that

(3.17) lim
r→∞

1
r

∫ r

r0

∫ s

r0

Θ2(u)duds = ∞,

and

(3.18) lim
r→∞

1
r

∫ r

r0

ds

h2(s)
= γ > 0.

Then Eq.(2.6) is oscillatory.

Proof. Let φ(r) = 1. It follows that Eq.(2.6) is oscillatory from Theorem 3.2. �

For illustration, we consider the following two examples.

Example 3.1. Consider Eq.(1.1) with

A(x) = diag
( 1
‖x‖

,
1
‖x‖

)
, b(x) =

( 1
‖x‖2

,
1

‖x‖2

)
,(3.19)

c(x) =
2 + cos ‖x‖ − 2‖x‖ sin ‖x‖

4‖x‖5/2
, f(y) = |y|y,

for x ∈ Ω(π/2), where N = 2, p = 3. It is easy to see that

λmin(x) =
1
‖x‖

, ‖A‖ =
√

2
‖x‖

, λ(r) = 2−3/4
√
r, ε = 2,

C1(x) =
2 + cos ‖x‖ − 2‖x‖ sin ‖x‖

4‖x‖5/2
− 32

27‖x‖4
,

and

CM1(r) =
π(2 + cos r − 2r sin r)

2 r3/2
− 64π

27r3
.

Let ϕ(r) = r, l = 3. Thus, for r ≥ π/2

h1(r) =
1

25/4
√
π r

, Θ1(r) =
π(2 + cos r − 2r sin r)

2
√
r

− 4π(4 + 9
√

2)
27r2

.

Clearly, ∫ ∞

π/2

h1(s)ds = ∞,

and∫ r

π/2

Θ1(s)ds = π
[√

r(2+cos r)−
√

2π
]
+

4π(4 + 9
√

2)
27

(1
r
− 2
π

)
→∞, as r →∞.

Hence, all conditions of Corollary 3.1 are satisfied and hence Eq.(3.19) is oscillatory.
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Example 3.2. Consider Eq.(2.6) with

A(x) = diag(1, 1), b(x) =
( 1
‖x‖2

,
1

‖x‖2

)
,(3.20)

c(x) =
1 + ‖x‖ sin ‖x‖

‖x‖
, f(y) = y + y3,

for x ∈ Ω(1), where N = 2. It is easy to see that

λmax(‖x‖) = 1, ‖A‖ =
√

2, λ(r) = 1, ε = 1.

and

C2(x) =
1 + ‖x‖ sin ‖x‖

‖x‖
− 1
‖x‖4

, CM2(r) = 2π(1 + r sin r)− 2π
r3
.

Let η(r) = 2π. Thus, for r ≥ 1,

ψ(r) =
1
r
, h2(r) =

1
4π
, Θ2(r) =

2π(1 + r sin r)
r

+
π

r2
− 2π
r4
.

Clearly, ∫ ∞

1

h2(s)ds =
∫ ∞

1

Θ2(s)ds = ∞.

Thus, all conditions of Corollary 3.2 are satisfied and hence Eq.(3.20) is oscillatory.

Acknowledgment. The authors are greatly indebted to the referee for several
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[7] R. Mař́ık, Hartman-Wintner type theorem for PDE with p−Laplacian, EJQTDE.,
Proc. 6th Coll. QTDE., 18(2000), 1-7.
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