DOI QR코드

DOI QR Code

Characteristics of Bacterial Community for Biological Activated Carbon(BAC) by Culturable and Unculturable Methods.

배양적 및 비배양적 방법에 의한 생물활성탄 부착세균 군집 특성

  • Park, Hong-Ki (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Jung, Eun-Young (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Jung, Mi-Eun (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Jung, Jong-Moon (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Ji, Ki-Won (Water Quality Institute, Water Works HQ of Busan Metropolitan City) ;
  • Yu, Pyung-Jong (Water Quality Institute, Water Works HQ of Busan Metropolitan City)
  • 박홍기 (부산광역시 상수도사업본부 수질연구소) ;
  • 정은영 (부산광역시 상수도사업본부 수질연구소) ;
  • 정미은 (부산광역시 상수도사업본부 수질연구소) ;
  • 정종문 (부산광역시 상수도사업본부 수질연구소) ;
  • 지기원 (부산광역시 상수도사업본부 수질연구소) ;
  • 유평종 (부산광역시 상수도사업본부 수질연구소)
  • Published : 2007.09.30

Abstract

The Biological Activated Carbon (BAC) process in the water treatments represents a kind of biofiltration process which capabilities of bacteria to remove organic matters are maximized. It enables to eliminate organic matters and effectively reduce microbial regrowth potentials. As attached bacteria employ natural organic matter as a substrate, they are significantly dependent on indigenous microorganisms. In this study, characteristics of bacterial community by culturable and unculturable Methods have been conducted in a pilot plant using SAC in water treatment process at the downstream of the Nakdong River. Based on the results, HPC and bacterial- production for coal-based activated carbon material were $1.20{\sim}56.2{\times}l0^7$ cfu/g and $1.2{\sim}3.7\;mgC/m^{3}h$, respectively, in the SAC process. The highest level of attached bacteria biomass and organic carbon removal efficiency was found in the coal-based activated carbon. The genera Pseudomonas, Flavobacterium, Alcaligenes, Acilzetobacter, and Spingomonas were identified for each activated carbon material. Pseudomonas vesicularis was the dominant species in the coconut- and coal-based materials, where as Pseudomonas cepacia was the dominant species in the wood-based material. The Scanning Electron Microscope (SEM) observation of the activated carbon surface also found the widespread distribution of rod form and coccus. The community of attached bacteria was investigated by performing Fluorescent in situ hybridization (FISH) analysis. a group was dominant in coal, wood and coccunt-based materials, ${\alpha},\;{\beta}\;and\;{\gamma}$ group ranged from 27.0 ${\sim}$ 43.0%, 7.1 ${\sim}$ 22.0%, 11.3 ${\sim}$ 28.6%, respectively. These results suggest that a group bacterial community appears to be regulated removal efficiency of organic material in water treatment process.

정수처리 공정에서 생물활성탄 (BAC) 공정은 미생물의 유기물 제거능을 극대화시킨 일종의 생물여과 공정이다 BAC 공정은 유기물과 미생물 재성장능을 효과적으로 제거한다. BAC 공정은 그 수계에 존재하는 미생물들이 활성탄에 부착 ${\cdot}$ 서식하며 수중의 천연유기물질을 기질로 이용하기 때문에 그 수계에 서식하는 미생물 종들에 매우 의존적이다. 본 연구는 낙동강 하류의 배리취수장 원수를 사용하여 생물활성탄에 의한 pilot-plant 공정을 운전하면서 SAC 공정에서의 활성탄 재질별로 배양작 (평판배양법) 및 비배양적 방법 (FISH)을 이용하여 SAC 부착세균의 군집구조 특성을 조사하였다. 실험결과 석탄계 재질의 부착세균 HPC 및 생산력이 각각 $1.20{\times}l0^7{\sim}56.2{\times}l0^7$ CFU/g, $1.2{\sim}3.7\;mg-C/m^3{\cdot}h$ 의 범위를 보여 세균 생체량과 DOC 제거율은 석탄계 재질이 가장 높은 것으로 나타났다. 배양적 방법으로 활성탄 재질별 부착세균을 동정한 결과 Pseudomonas 속이 우접하였고, 그 다음으로 Flavobacterium 속, Alcaligenes 속, Acinetobacter 속, Sphingomonas 속 등의 순으로 동정되었다. 또한, Pseudomonas 속 중 석탄계와 야자계 BAC에서는 Pseudomonas vesicularis, 목탄계 BAC에서는 Pseudomonas cepacia가 우점종으로 분포하였다. 비배양적 방법인 FISH 법을 이용한 세균 군집구조 조사결과 활성탄 재질별로 ${\alpha}$군집 27.0 ${\sim}$ 43.0%, ${\gamma}$ 군집 11.3 ${\sim}$ 28.6%, ${\beta}$ 군집 7.1 ${\sim}$ 22.0% 비율로 나타나 유기물 제거효율은 주로 ${\alpha}$ 군집에 의해 조절되어짐을 알 수 있었다.

Keywords

References

  1. Aiken, G. R, D. M. McKnight, R L. Wershaw and P. MacCarthy. 1987. Humic Subtances in Soil, Sediment and Water. Wiley-Intersciece, New York
  2. Alfreider, A, J. Pernthhaler, R. Amman, B. Sattler, F. O. Glockner, A. Wille and R. Psenner. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62, 2138-2144
  3. Amann, R, W. Ludwig and K. H. Schleifer. 1994. Identification of uncultured bacteria: a challenging task for molecular taxonomists, ASM News 60, 360-365
  4. Amann, R, W. Ludwig and K. H. Schleifer. 1995. Phylogenetic and in situ defection of individual microbial cells without cultivation. Microbial. Rev. 59, 143-169
  5. Bach, H., S. Tarre and M. Green. 1998. Post treatment of groundwater denitrification fluidized bed reactor effluents to achieve drinking water quality. J. Industrial Microbiol. & Biotechn. 20, 354-359 https://doi.org/10.1038/sj.jim.2900535
  6. Bell, R. T., G. M. Ahlgren and I. Ahlgren. 1983. Estimating bacterioplankton production by the [$^{3}H$]thymidine incorporation in a eutrophic Swedish Lake. Appl. Environ. Microbiol. 45, 1709-1721
  7. Bouvier, T. and P. A D. Giorgio. 2003. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol. Ecol. 44, 3-15 https://doi.org/10.1016/S0168-6496(02)00461-0
  8. Falkentoft, C, M., E. Muller, P. Amz, P. Harremoes, H. Mosbak, P. A. Wwlderer and S. Wuertz. 2002. Population changes in a biofilm reactor for phosphorus removal as evidenced by the use of FISH. Water Res. 36, 491-500 https://doi.org/10.1016/S0043-1354(01)00231-7
  9. Fonseca, A. C., R. S. Summers and M. T. Hernandez. 2001. Comparative measurements of microbial activity in drinking water biofilters. Water Res. 35, 3817-3824 https://doi.org/10.1016/S0043-1354(01)00104-X
  10. Fuhrman, J. A and F. Azam. 1982. Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results. Mar. Biol. 66, 109-120 https://doi.org/10.1007/BF00397184
  11. Glockner, F. O., B. M. Fuchs and R. Amann. 1999. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65, 3721-3726
  12. Kihn, A., A. Andersson, P. Laurent, P. Servais and M. Prevost. 2002. Impact of filtration material on nitrification in biological filters used in drinking water production. J. Wat. Suppl.: Res. & Technol.-Aqua. 51, 35-45 https://doi.org/10.2166/aqua.2002.0004
  13. Kim, D. J., S. H. Hong and T. S. Ann. 1999. Seasonal and Vertical Changes of Bacterial Community in Soyangho. The Korean Journal of Microbiology 35, 242-247
  14. Kogure K., U. Simidu and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25, 415-420 https://doi.org/10.1139/m79-063
  15. Krieg, N. R and J. G. Holt. 1984. Bergey's Manual of Systematic Bacteriology. Williams & Wilins. Baltimore
  16. Langmark, J., M. V. Storey, N. J. Ashbolt and T. A. Stenstrom. 2004. Artificial grounderwater treatment: biofilm activity and organic carbon removal performance. Water Res. 38, 740-748 https://doi.org/10.1016/j.watres.2003.10.021
  17. Madigan, T. M., J. M. Martinko and J. Parker. 2000. Block Biology of Microorganisms, pp. 453-460, Prentice-Hall, New York
  18. Manz, W., R. Amann, W. Ludwig and M. Wangner. 1992. Phylogentic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Appl. Environ. Microbiol. 58, 593-600
  19. Melin, E., B. Eikebrokk, M. Brugger and H, Odegaard. 2002. Treatment of humic surface water at cold temperatures by ozonation and biofiltration, Wat. Sci. Tech.: Wat. Supply 2, 451-457 https://doi.org/10.2166/ws.2002.0203
  20. Park, J., S. Takizawa, H, Katayama and S. Ohgaki. 2002. Biofilter pretreatment for the control of microfiltration membrane fouling. Wat. Sci. Tech.: Wat. Supply 2, 193-199
  21. Park, J. Y. 1994. Drinking Water Microbiology. pp. 385-396, Chemical Engineering Research Corporation. Seoul
  22. Parsons, T. R, Y. Maita and C. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York
  23. Rice, R. G. and C. M. Robson. 1982. Biological Activated Carbon. Lewis Publishers, Boca Raton, Florida
  24. Rigway, H. F. and B. H. Olsan. 1981. Scanning electron microscope evidence for bacterial colonization of a drinking water distribution system. Appl. Environ. Microbiol. 41, 274-287
  25. Roh, J. S., H. J. Son, H. K. Park and Y. D. Hwang. 2003. Changes in Characteristics of Biodegradable Organic Matter Removal by Advanced Water Treatment Processes. J. KSEE 25, 909-919
  26. Rou, D. C. 1997. Optimization of Water treatment process by Ozone and Granular Activated Carbon. Theme of Master in National of Bukyeng University
  27. Servais, P., G. Billen, P. Bouillot and M. Benezet. 1992. A pilot study of biological GAC filtration in drinking water treatment. J. Wat. Suppl.: Res. & Technol.-Aqua. 41, 163-168
  28. Son, H, J. and J. S. Roh. 2003. Removal Characteristics of chlorine disinfectant in Activation Process. J. KSEE. 27, 762-770
  29. Staley, J. T. and A. Konopka. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. microbial. 39, 321-346 https://doi.org/10.1146/annurev.mi.39.100185.001541
  30. Stewart, M. H., R L. Wolfe and E. G. Means. 1990. Assessment of bacteriological activity in carbon treatment of drinking water. Appl. Environ. Microbiol. 56, 3822-3825
  31. Yu, F. P. and G. A. McFeters. 1994. Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes. J. Microbiol. Methods 20, 1-10 https://doi.org/10.1016/0167-7012(94)90058-2