DOI QR코드

DOI QR Code

Growth Inhibitions of Strains Exhibiting Resistances against General Disinfectants and Antibiotics by MBT-01108 Material.

MBT-01108 물질에 의한 일반 소독제 및 항생물질 내성균주의 생육억제

  • Kim, Hae-Nam (Department of Beauty Care, Masan College) ;
  • Park, Jin-Young (Division of Biological Science, Pusan National University) ;
  • Kim, Sam-Woong (Division of Biological Science, Pusan National University) ;
  • Jun, Hong-Ki (Division of Biological Science, Pusan National University)
  • 김해남 (마산대학 뷰티케어학과) ;
  • 박진영 (부산대학교 생명과학부 미생물학과) ;
  • 김삼웅 (부산대학교 생명과학부 미생물학과) ;
  • 전홍기 (부산대학교 생명과학부 미생물학과)
  • Published : 2007.09.30

Abstract

The 30% resistant frequencies of pathogenic bacteria were identified against generally utilizing disinfectants. Among the used disinfectants, foodsef, Taego, and Iodo 175 were dictated by lower sensitivities against pathogenic bacteria, as well as higher resistant frequencies when compared with other disinfectants. The resistant frequencies against antibiotics were also dictated by 30% through MIC (minimal inhibitory concentration) and paper disc methods. Especially, the used bacteria exhibited resistances against gentamycin, kanamycin, and streptomycin, which included in all aminoglycoside group. The MBT-01108 material, which extracted and purified from a powder obtained by processing of Opunita ficus-indica var. saboten Makino trunk, did not develop or grow resistant bacteria. Interestingly, the multi-drug resistant bacteria such as MRSA, resistant Pseudomonas aeruginosa, VRE, and E. coli 0157 did not resistant against MBT-01108 material. These results suggest that MBT-01108 material uses as an anti-microbial agent.

시중에서 사용되고 있는 일반 소독제를 대상으로 하여 병원 미생물의 내성 빈도를 검토한 결과는 약 30%였다. 그 중에서 푸드세프 (산화제 중 할로겐 계 소독약)와 동인테고 (양성 계면 활성제) 및 Iodo 175 (양성 계면 활성제)는 병원 미생물에 대해 낮은 감수성을 나타냈었을 뿐 아니라, 시험에 사용된 다른 소독제에 비하여 높은 내성 빈도를 나타내었다. 소독제 내성 균주를 사용해서 항생제 내성을 MIC test와 paper disc 방법으로 확인한 결과 30%의 내성 빈도를 나타내었다. 다른 항생제에 비해 aminoglycoside 계의 항생제인 gentamycin, kanamycin, streptomycin에서 높은 내성 빈도를 나타냄을 확인할 수 있었다. 본 연구실에서 제주도 손바닥 선인장으로부터 추출${\cdot}$분획한 MBT-01108 물질을 소독제와 항생제에 내성을 획득한 내성균에 상용했을 경우 내성이 생기지 않을 뿐 아니라, 내성균이 자라지 못하였다. 또한 현재 문제시되고 있는 다제 내성균인 MRSA, R-Pseudomonas aeruginosa, VRE, E. coli O157에 사용했을 경우에도 마찬가지의 결과를 얻을 수 있었다. 이상에서 살펴 본 바와 같이 손바닥 선인장에서 추출 ${\cdot}$ 분획한 MBT-01108 물질은 기존의 항생제와는 다른 기작으로 작용을 할 것으로 생각되고, 신규 항균 활성 물질의 약제 개발에 그 유용성이 매우 클 것으로 기대되며 여러 가지 항균성 생활 제품의 개발에도 유용할 것으로 기대된다.

Keywords

References

  1. Branch, A., D. H. Starkey and E. E. Power. 1965. Diversifications in the tube dilution test for antibiotic sensitivity of microorganisms. Appl. Microbiol. 13, 469-472
  2. Cloechaert, A., S. Baucheron, G. Flaujac, S. Schwarz, C. Kehrenverg, J. Martel, and E. Chaslus-Dancla. 2000. Plasmid-mediated florfenicol resistanc enconded by th floR gene in Escherichia coli isolated from cattle. Antimicrob. Agents Chemother. 44. 2858-2860 https://doi.org/10.1128/AAC.44.10.2858-2860.2000
  3. Cohen, M. L. 1992. Epidemiology of drug resistance : Implications for a post-antimicrobial era. Science 257, 1050-1055 https://doi.org/10.1126/science.257.5073.1050
  4. EUCAST. 2000. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 6, 508
  5. Ferguson, G. C., J. A. Heinemann and M. A. Kennedy. 2002. Gene transfer between Salmonella enterica serovar Typhimurium inside epitherial cells. J. Bacteriol. 184, 2235-2242 https://doi.org/10.1128/JB.184.8.2235-2242.2002
  6. Frontiers in Biotechnology. 1994. Antibiotic Resistance. Science 264, 317-476
  7. Hoang, T. T. and H. P. Schweizer. 1999. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (Fab I) : A target for the antimicrobial triclosan and its role in homoserine lactone syntheis. J. Bacteriol. 181, 5489-5497
  8. Horii, T., Y. Arakawa, M. Ohta, S. Ichiyama, R. Wacharotayankun and N. Kato. 1987. Plasmid-mediated AmpC-type beta-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum beta-Iactams, including moxalactam. Antimicrob. Agents Chemother. 37, 984-990
  9. Kahnsah, E., P. Kopsombut, M. A. Malque and A. Brossi. 1993. The effects of mescaline and some of its analogs on cholinergic neuromuscular transmission. Neuropharmacology 32(2), 169-174 https://doi.org/10.1016/0028-3908(93)90097-M
  10. Kang, S. S. 1985. The encyclopedia of oriental herbal medicine. pp. 2731-2733. Sanghae science technology publishing company Sohakgoan, Tokyo
  11. Kim, J., C. I. Wei and M. R. Marshall. 1995. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem. 43, 2839-2845 https://doi.org/10.1021/jf00059a013
  12. Ko, G. S. 1994. Luminous fluxplant taxoomy. pp. 341-342. Seomon company, Seoul in Korea
  13. Lennette, E. H., A. Balows, W. J. Hausler and H. J. Jr., Shadomy. 1985. Manual of Clnical Microbiology, 4th ed. American Society for Microbiology 978-987
  14. MacLowry, J. D. and M. J. Jaqua. 1970. Detailed methodology and implementation semiautomated serial dilution micro technique for antimicrobial susceptibility testing. Appl. Microbiol. 20, 46-53
  15. McMurry, L. M., M. Oethinger and S. B. Levy. 1998a. Triclosan targets lopid synthesis. Nature 394, 531-532 https://doi.org/10.1038/28970
  16. McMurry, L. M., M. Oethinger and S. B. Levy. 1998b. Overexpression of marA, soxS or acrAB produces resistance to triclosan in Escherichia coli. FEMS Microbiol Lett. 166, 305-309 https://doi.org/10.1111/j.1574-6968.1998.tb13905.x
  17. Reddish, G. F. 1957. Antiseptics, Disinfectants, Fungicides and Chemical and Physical Sterilization. pp. 23-39, 2nd eds., Philadelphia, Lea & Febiger
  18. Riedl, S., K. Ohlsen, G. Werner, W. Witte and J. Hacker. 2000. Impact of flavophospholipol and vancomycin on conjugational transfer of vancomycin resistance plasmids. Antimicrob. Agents Chemother. 44, 3189-3192 https://doi.org/10.1128/AAC.44.11.3189-3192.2000
  19. RusselI, A. D. 2001. Disinfection, Sterilization and Preservation, pp. 18-20, 5th eds., (Block, 5.5.), Philadelphia, Lippincott Williams and Wilkins
  20. Simjee, S., D. G. White, P. F. McDermott, D. D. Wagner, M. J. Zervos, S. M. Donabedian, L. L. English, J. R. Hayes and R. D. Walker. 2002. Characterization of Tn1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: Evidence of gene exchange between human and animal Enterococci. J. Clin. Microbiol. 40, 4659-4665 https://doi.org/10.1128/JCM.40.12.4659-4665.2002
  21. Stuart, B. L. 2001. Antibacterial Household Products : Cause for Concern. Emerg. Infect. Dis. 7, 512-515 https://doi.org/10.3201/eid0707.017705
  22. Suller, M. T. and A. D. Russell. 2000. Triclosan and antibiotic resistance in Stahpylococcus aureus. J. Antimicrob. Chemother. 46, 11-18 https://doi.org/10.1093/jac/46.1.11
  23. Swartz, M. N. 1997. Use of antimicrobial agents and drug resistance. N. Engl. J. Med. 337, 419-492
  24. Tomasz, A. 1994. Multiple-antibiotic-resistant pathogenic bacteria. A report on the Rockefeller University Workshop. N. Engl. J. Med. 330, 1247-1251
  25. Yanagi, M. and K. Yamazaki. 1989. Useful plants of the world. pp. 53-54. Heibonsha, Tokyo

Cited by

  1. The Distribution of Indicator Microorganisms and Identification of Antibiotic Resistant Strains in Domestic Animal Feces vol.37, pp.4, 2011, https://doi.org/10.5668/JEHS.2011.37.4.289