DOI QR코드

DOI QR Code

Potentilla속 내 한국의 솜양지꽃(Potentilla discolor)과 몽골의 P. conferta 생식계의 비교

Comparison of Reproduction Systems of Genus Potentilla, Potentilla discolor in Korea and P. conferta in Mongol

  • Huh, Man-Kyu (Division of Molecular Biology, Dongeui University)
  • 발행 : 2007.09.30

초록

한국의 솜양지꽃(Potentilla discolor) 9개 집단과 몽골의 양지꽃속 식물 종 P. conferta 두 집단을 이용하여 두 종의 생식계를 비교하였다. 분포지에서 19개 형태 형질을 조사하여 정량분석에 사용하였다. 형태 형질에서 두 종간 많은 형질에 대해 유의한 차이를 나타내었다. 주성분분석에서 마디간 길이와 뿌리의 길이와 개수 등에서 특히 유의한 차이를 나타내어 이들 두 종을 분류하는데 유의한 성분으로 판단된다. P. conferta에서 라메트의 수는 거리의 증가에 따라 현저하게 감소하나 P. discolor는 정규분포 모양의 곡선을 나타내어 $60{\sim}80$ cm에서 가장 많았다. 빛에 대한 감수성은 P. discolor가 P. conferta보다 내성을 가지나 가뭄에 대해서는 P. conferta가 P. discolor보다 더 높은 내성을 나타내었다 . 이는 사막에 근접한 건조한 지역에 적응한 형태로 판단되며 온대 지방인 우리나라에 분포하는 솜양지꽃에 비해 단위면적당 밀도가 높아 이웃간 거리가 짧아 짧은 라메트를 많이 가지며 라메트 수가 많아 영양번식이 더 많이 이루어지고 있음을 나타낸다.

I investigated the reproduction system of nine natural populations of P. discolor in Korea and two Mongolian P. conferta populations. The measurements of 19 quantitative or qualitative morphological characters were taken on each of total individuals directly from their natural habitats. Multivariate principal component analyses (PCA) were conducted to detect differences among populations consid-ering several characters simultaneously of variances using the statistical analysis system. 19 morpho-logical characteristics between Korean Potentilla species and Mongolian Potentilla species showed a slight heterogeneity of variance. The length of internodes (LFL and LSI) and characteristics of root (LLR and NOR) were shown a significant difference between two species (P<0.05). The number of ra-mets in P. conferta decreased with increasing geographic distance from viviparity. However, P. discolor has most ramets at distance intervals $60{\sim}80$ cm. In light conditions, P. discolor was significantly less resilience than P. conferta. In drought conditions, although there was not shown significant difference, P. conferta was less resilience than P. discolor. The core analysis indicates that P. conferta is the more resistant species than P. discolor and usually propagates by clonal growth during several strong envi-ronmental disadvantages such as drought events.

키워드

참고문헌

  1. Bayer, R. J. 1990. Patterns of clonal diversity in the Antennaria rosea (Asteraceae) polyploid agamic complex. Am. J. Bot. 77, 1313-1319 https://doi.org/10.2307/2444591
  2. Clegg, M. T. 1980. Measuring plant mating systems. BioScience 30, 814-818 https://doi.org/10.2307/1308373
  3. Cook, R. E. 1983. Clonal plant populations. Am. Sci. 71, 244-253
  4. DeClerck, F. A. J., M. G. Barrour and J. O. Sawyer, 2006. Species richness and stand stability in conifer forests of the Sierra Nevada. Ecology 87, 2787-2799 https://doi.org/10.1890/0012-9658(2006)87[2787:SRASSI]2.0.CO;2
  5. Ellstrand, N. C. and M. L. Roose. 1987. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74, 123-131 https://doi.org/10.2307/2444338
  6. Eriksen, B. 1997. Morphometric analysis of Alaskan members of the genus Potentilla sect. Niveae (Rosaceae). Nordic J. Bot. 17, 621-630 https://doi.org/10.1111/j.1756-1051.1997.tb00358.x
  7. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s. Distributed by the Author. Department of Genetics, Univ. of Washington, Seattle
  8. Freestone, A. L. 2006. Facilitation drives local abundance and regional distribution a rare plant in a harsh environment. Ecology 87, 2728-2735 https://doi.org/10.1890/0012-9658(2006)87[2728:FDLAAR]2.0.CO;2
  9. Hamrick, J. L., M. J. W. Godt and S. L. Sherman-Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95-124 https://doi.org/10.1007/BF00120641
  10. Hartnett, D. C. and F. A. Bazzaz, 1985. The regulation of leaf, ramet and gene densities in experimental populations of the rizomatous perennial Solidago canadensis. J. Ecol. 73, 429-443 https://doi.org/10.2307/2260485
  11. Holsinger, K. E. 1991. Mass-action models of plant mating systems, the evolutionary stability of mixed mating systems. Am. Nat. 138, 606-622 https://doi.org/10.1086/285237
  12. Huh, M. K. 2001. Allozyme variation and population structure of Carex humilis var. nana (Cyperaceae) in Korea. Can. J. Bot. 79, 457-463 https://doi.org/10.1139/cjb-79-4-457
  13. Lee, Y. N. 1997. Flora of Korea. Kyo-Hak Publishing Co, Seoul, Korea
  14. Nevo, E., A. Beiles, R. Ben-Shlomo, 1984. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates, pp. 13-21, In Many, G. S. (ed.), Evolutionary Dynmnics of Ggenetie Ddiversity, Springer, Berlin
  15. Schlichting, C. 1986. The evolution of phenotypic plasticity in plants. Ann. Rev. Ecol. Syst. 17, 667-693 https://doi.org/10.1146/annurev.es.17.110186.003315
  16. Silander, J. A. and J. Antonovics. 1979. The genetic basis of the ecological amplitude of Spariina patens. I. Morphologic and physiological traits. Evolution 33, 1114-1127 https://doi.org/10.2307/2407471
  17. Sobey, D. G. and P. Barkhouse. 1977. The structure and rate growth of the rhizome of some forest herbs and dwarf herbs of the New Brunswick-Nova Scotia border region. Can. Field-Nat. 91, 377-383
  18. Spommer, G. G. 1999. Evidence of protocarnivorous capabilities in Geranium viscosissimum and Potentilla arguta and other sticky plants. Int. J. Plant Sci. 160, 98-101 https://doi.org/10.1086/314109
  19. Templeton, A. R. 2002. 'Optimal' randomization strategies when testing the existence of a phylogeographic structure: a reply to Petit and Grivet. Genetics 161, 473-475
  20. Tilman, D. and A. C. Lehman. 2001. Biodiversity, composition, and ecosystem processes: theory and concepts, pp. 365, In Kinzig, A. P., S. W. Pacala and D. Tilman (eds.), The Functional Consequences of Biodiversity. Princeton University Press, Princeton, New Jersey, USA
  21. Weaver, M. and M. Kellman. 1981. The effects of forest fragmentation on woodland tree biotas in Southern Ontario. J. Biogeography 8, 199-210 https://doi.org/10.2307/2844677
  22. Zar, J. H. 1984. Biostatistical Analysis. pp. 718, 2nd eds., Prentice-Hall, Englewood Cliffs, New Jersey