3D-QSAR Analysis on the Fungicidal Activity with N-Phenylbenzenesulfonamide Analogues against Phytophthora blight (Phytophthora capsici) and Prediction of Higher Active Compounds

고추역병균(Phytophthora capsici)에 대한 N-Phenylbenzenesulfonamide 유도체들의 살균활성에 관한 3D-QSAR 분석과 고활성 화합물의 예측

  • Soung, Min-Gyu (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Kang, Kyu-Young (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Cho, Yun-Gi (Division of Applied Life Science, Gyeongsang National University) ;
  • Sung, Nack-Do (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • 성민규 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 강규영 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 조윤기 (경상대학교 농업생명과학대학 환경생명화학전공) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부)
  • Published : 2007.09.30

Abstract

3D-QSARs on the fungicidal activity of N-phenylbenzenesulfonamide and N-phenyl-2-thienylsulfonamide analogues (1-37) against Phytophthora blight (Phytophthora capsici) were studied quantitatively using CoMFA and CoMSIA methods. The statistical results of the optimized CoMFA (2) model ($r^2_{cv.}(q^2)$ = 0.692 & $r^2_{ncv.}$= 0.965) show better predictability and fitness than CoMSIA (2) model ($r^2_{cv.}(q^2)$ = 0.796 & $r^2_{ncv.}$= 0.958). The fungicidal activities according to the information of the optimized CoMFA (2) model were dependent upon the steric and electrostatic fields of the molecules. Therefore, from the contribution contour maps of CoMFA (2) model, it is expected that 63% contribution was caused by the steric bulk of meta-substituent ($R_1$) on the S-phenyl ring. Also, the other contribution level of 32.9% was represented by the positive charged $R_4-group$ ($R_1$) on the N-phenyl ring and para-substituent ($R_1$) on the S-phenyl ring. A series of higher active compounds, $R_1$= 3-decyl substituent ($pred.pI_50$= 5.88) etc. were predicted based on the findings.

고추역병균(Phytophthora capsici)에 대한 N-phenylbenzenesulfonamide 및 N-phenyl-2-thienylsulfonamide 유도체(1-37)들의 살균활성에 관한 3차원적인 정량적 구조와 활성과의 관계(3DQSARs)들을 비교 분자장 분석(CoMFA)과 비교분자 유사성 지수분석(CoMSIA) 방법으로 각각 검토하였다. CoMFA(2) 모델($r^2_{cv.}(q^2)$ = 0.692 및 $r^2_{ncv.}$= 0.965)이 CoMSIA(2) 모델($r^2_{cv.}(q^2)$ =0.796 및 $r^2_{ncv.}$= 0.958)보다 상관성과 예측성이 양호하였다. 최적의 CoMFA(2) 모델에 따른 살균활성은 분자의 입체장과 정전기장에 의존적이었다. 또한, CoMFA(2) 모델의 등고도 분석 결과로부터 살균활성의 63%가 입체적으로 큰 S-phenyl 고리의 meta-치환기($R_1$) 그리고 나머지 살균활성의 32.9%가 양하전을 띄는 N-phenyl 고리의 $R_4$-치환기와 S-phenyl 고리의 para-치환기($R_1$)에 기인하는것으로 예측되었으며 이 같은 사실에 기초하여 일련의 고활성 화합물, $R_1$ = 3-decyl 치환체 ($pred.pI_50$ = 5.88) 등이 예측되었다.

Keywords

References

  1. Scozzafava, A., Owa, T., Mastrolorenzo, A. and Supuran, C. T. (2003) Anticancer and antiviral sulfonamides. Curr. Med. Chem. 10, 925-953 https://doi.org/10.2174/0929867033457647
  2. Bouissane, L., Kazzouli, E. S., Le'once, S., Pfeiffer, B., Rakib, E. M., Khouilib, M. and Guillaumeta, G. (2006) Synthesis and biological evaluation of N-(7-inda-zolyl)benzenesulfonamide derivatives as potent cell cycle inhibitors. Bioorg. Med. Chem. 14, 1078-1088 https://doi.org/10.1016/j.bmc.2005.09.037
  3. Tomlow, C. D. S. (2006) In The Pesticide Manual (14th ed.), British Crop Production Council (BCPC) Publication, Hampshire, UK
  4. Andrea, T. A., Artz, S. P., Ray, T. B. and Pasteris, R. J. (2000) In Rational Approaches to Structure, Activity, and Ecotoxicology of Agrochemicals; Structure-Activity Relationships of Sulfonylurea Herbicides. (Draber, W. and Fujita, T. eds.), CRC Press, London, Ch. 15, pp. 373-395
  5. De Benedetti, P. G. (1991) In Progress in drug research (ed. Jucker), pp. 361-417, E., Birkhäuser Verlag, Basel
  6. Zani, F. and Vicini, P. (1998) Antimicrobial activity of some 1,2-benzisothiazoles having a benzenesulfonamide moiety. Arch. Pharm. Med. Chem. 331, 219-223 https://doi.org/10.1002/(SICI)1521-4184(199806)331:6<219::AID-ARDP219>3.0.CO;2-U
  7. Mandell, G. L. and Petri Jr., W. A. (1995) In The pharmacological basis of therapeutics., Antimicrobial agents: sulfonamides, trimethoprim-sulfamethoxa zole, quinolones and agents for urinary tract infections. 9th ed., Hardman, J. G., New York, Mcgraw-Hill, pp. 716-722
  8. Eliopoulos, G. M., and Moellering Jr., R. C. (1991) In Laboratory medicine; Antibiotics. (3th ed. Lorian), V., Williams & Willkins, Batimore, Ch. 13
  9. Roberts, D. W., Knuteson, J. A. and Jackson, R. (2003) In The dissipation of penoxsulam in flooded rice fields. Pesticides in air, plant, soil & water systems; XII Symposium pesticide chemistry; Piacenza, Italy, pp. 349-357
  10. Hubbard, R. E. (2006) In Structure-Based Drug Discovery; An Over View. RSC, Cambridge
  11. Senger, S., Chan, C., Convery, M. A., Hubbard,, J. A., Shah, G. P., Watson, N. S. and Young, R. J. (2007) Sulfonamide-related conformational effects and their importance in structure-based design. Bioorg. Med. Chem. Lett. 17, 2931-2934 https://doi.org/10.1016/j.bmcl.2007.02.034
  12. Saiza-Urra, L., Gonzalez, M. P., Collado, I. G. and Hernandez- Galan, R. (2007) Quantitative structure-activity relationaship studies for the prediction of antifungal activity of Narylbenzenesulfonamides against Botrytia cineria. J. Mol. Graphics Modelling 25, 680-690 https://doi.org/10.1016/j.jmgm.2006.05.006
  13. Jang, S. C., Kang, K. Y. and Sung, N. D. (2007) CoMFA and CoMSIA analysis on the fungicidal activity against Dampingoff (Pythium ultimum) with N-phenylbenzenesulfonamide Analogues. Kor. J. Pesticide Sci. 11, 8-17
  14. Akamatsu, M. (2002) Current State and Perspectivies of 3DQSAR, Curr. Topics Med. Chem. 2, 1381-1394 https://doi.org/10.2174/1568026023392887
  15. Kang, J. G., Yang, D. H., Ten, L. N., Park, K. H. and Kang, K. Y. (2003) N-2-Chloro-4-nitrophenylbenzenesulfonamide derivative Compounds having anti-fungal activites against phytopathogens and method for using thereof. Kor. Patent., 10-2003-0042320
  16. Kang, J. G., Yang, D. H., Ten, L. N., Park, K. H. and Kang, K. Y. (2003) N-2,6-dichloro-(4-trifluoromethyl)phenylbenzenesulfonamide derivative compounds having antifungal activites against phytopathogens and method for using thereof. Kor. Patent., 10-2003-0042321
  17. Purcell, W. P. and Singer, J. A. (1967) A brief review and table of semiempirical parameters used in the Hückel molecular orbital method. J. Chem. Eng. Data. 122, 235-246
  18. Marshall, G. R., Barry, C. D., Bosshard, H. E., Dammkoehler, R. A. and Dunn, D. A. (1979) In Computer-assisted drug design: The conformational parameter in drug design; active analog approach (ed. Olsen, E. C. and Christoffersen, R. E.), American Chemical Society, Washington, D.C., pp. 205-226
  19. Clark, M., Cramer III, R. D., Jones, D. M., Patterson, D. E. and Simeroth, P. E. (1990) Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases, Tetrahedron Comput. Methodol. 3, 47-59 https://doi.org/10.1016/0898-5529(90)90120-W
  20. Cramer, R. D., Bunce, J. D. and Patterson, D. E. (1988) Crossvalidation, Bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct. Act. Relat. 7, 18-25 https://doi.org/10.1002/qsar.19880070105