DOI QR코드

DOI QR Code

Analgesic and antipyretic actions of Muntingia calabura leaves chloroform extract in animal models

  • Zakaria, ZA (Faculty of Biotechnology and Life Sciences, Universiti Industri Selangor) ;
  • Kumar, G Hanan (Faculty of Biotechnology and Life Sciences, Universiti Industri Selangor) ;
  • Zaid, Siti NH Mohd (Faculty of Biotechnology and Life Sciences, Universiti Industri Selangor) ;
  • Ghani, Marwiza A (Faculty of Biotechnology and Life Sciences, Universiti Industri Selangor) ;
  • Hassan, MH (Faculty of Biotechnology and Life Sciences, Universiti Industri Selangor) ;
  • Hazalin, Nurul AMN (Faculty of Biotechnology and Life Sciences, Universiti Industri Selangor) ;
  • Khamis, Mahirah M (Faculty of Biotechnology and Life Sciences, Universiti Industri Selangor) ;
  • Devi, G Rathna (Faculty of Biotechnology and Life Sciences, Universiti Industri Selangor) ;
  • Sulaiman, MR (Department of Biomedical Sciences, Faculty of Medicine and Health Science, Universiti Putra Malaysia)
  • Published : 2007.03.31

Abstract

The present study was carried out to elucidate the potential of Muntingia (M.) calabura leaves chloroform extract (MCCE) as antinociceptive, anti-inflammatory and antipyretic agents using various animal models. The dried powdered leaves of M. calabura (20 g) were soaked in chloroform for 72 h and the supernatant obtained was then evaporated to dryness. The crude dried extract (0.912 g), dissolved in dimethyl sulfoxide (1:20; w/v) and considered as a stock solution (100% concentration/strength), was then diluted to the concentrations of 10 and 50% and used together in all experimental models. The MCCE was found to show significant (P < 0.05) antinociceptive and antipyretic activities, but less remarkable anti-inflammatory activity. Only the antinociceptive activity of MCCE measured using the abdominal constriction test and in the first phase of the formalin test occurred in a concentration-dependent manner. The anti-inflammatory activity of 50 and 100% concentrations MCCE was observed only at the range of time interval of 60 - 120 and 60 min, respectively. Based on the results, we conclude that the M. calabura leaves chloroform extract possessed remarkable antinociceptive and antipyretic, but less effective anti-inflammatory, activities and thus justifies the Peruvian folklore claims of its medicinal values.

Keywords

References

  1. Amabeoku GJ, Eagles P, Scott G, Mayeng I, Springfield E. (2001) Anlagesic and antipyretic effects of Dodonaea anglistifolia and Salvin Africana-lutea. J. Ethnopharmacol. 75, 117-124 https://doi.org/10.1016/S0378-8741(00)00395-0
  2. Begley DJ, Bradbury MWB, Kreuter J. (2000) The blood-brain barrier and drug delivery to the CNS. Dekker, New York, U.S.A
  3. Chakraborty A, Devi RKB, Rita S, Sharatchandra K, Singh TI. (2004) Preliminary studies on antiinflammatory and analgesic activities of Spilanthes acmella in experimental animal models. Indian J. Pharmacol. 36, 148-150
  4. Chen H, Lee HH, Duh CY, Chen IS. (2005) Cytotoxic chalcones and flavonoids from the leaves of Muntingia calabura. Planta Med. 71, 970-973 https://doi.org/10.1055/s-2005-871223
  5. Damas J, Remade-Volon G, Deflandre E. (1986) Further studies of the mechanism of counter irritation by turpentine. Arch. Pharmacol. 332, 196-200 https://doi.org/10.1007/BF00511412
  6. Dambisya YM, Lee TL. (1995) Effects of L-NAME, L-NMMA and L-arginine on the antinociceptive effects of morphine in mice. Methods Find Exp. Gin. Pharmacol. 17,577-582
  7. Dawson TM, Snyder SH. (1994) Gases as biological messengers: Nitric oxide and carbon monoxide in the brain. J. Neurosci. 14, 5147-5159
  8. De Miranda FGG, Vilar JC, Alves IAN, De Holanda Cavalcanti SC, Antoniolli AR (2001) Antinociceptive and antiedematogenic properties and acute toxicity of Tabebuia aoellanedae Lor. Ex Griseb. Inner bark aqueous extract. BMC Pharmacol. 1, 6 https://doi.org/10.1186/1471-2210-1-6
  9. Dharmasiri MG, Ratnasooriya WD, Thabrew MI. (2003) Water extract of leaves and stems of preflowering but not flowering plants of Anisomeles indica possesses analgesic and antihyperalgesic activity in rats. Pharmac. Biol. 41,37-44
  10. Di Meglio P, Ianaro A, Ghosh S. (2005) Amelioration of acute inflammation by systemic administration of a cell-permeable peptide inhibitor of NF-KB activation. Arthritis Rheum. 52, 951-958 https://doi.org/10.1002/art.20960
  11. Heapy CG, Jamieson A, Russell NJW. (1987) Afferent C-fiber and A-delta activity in models of inflammation Br. J. Pharmacol. 90, 164
  12. Hunskaar S, Hole K. (1987) The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain 30, 103-104 https://doi.org/10.1016/0304-3959(87)90088-1
  13. Hunskaar S, Fasmer OB, Hole K. (1985) Formalin test in mice: A useful technique for evaluating mild analgesics. J. Neurosci. Methods 14, 69-76 https://doi.org/10.1016/0165-0270(85)90116-5
  14. Jensen M. (1999) Trees commonly cultivated in Southeast Asia: An Illustrated Field Guide. (2nd ed.). FAO Corporate Document Repository, Craftsman Press, Bangkok
  15. Joseph SM, George MC, Rajasekharan Nair J, Priya Senan V, Pillai D, Sherief PM. (2005) Effect of feeding cuttlefish liver oil on immune function, inflammatory response and platelet aggregation in rats. Curr. Sci. 88, 507-511
  16. Kaneda N, Pezzuto JM, Soejarto DD, Kinghorn AD, Farnworth NR, Santisuk T, Tuchinda P, Udchachon J, Reutrakul V. (1991) Plant anticancer agents, XLVIII. New cytotoxic flavonoids from Muntingia calabura roots. J. Nat. Prod. 54, 196-206 https://doi.org/10.1021/np50073a019
  17. Kim HP, Son KH, Chang HW, Kang SS. (2004) Antiinflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 96, 229-245 https://doi.org/10.1254/jphs.CRJ04003X
  18. Kluger MJ. (1991) Fever: role of pyrogens and cryogens. Physiol. Rev. 71, 93-127
  19. Kupeli E, Orhan I, Toker G, Yesilada E. (2006) Antiinflammatory and antinociceptive potential of Madura pomifera (Rafin.) Schneider fruit extracts and its major isoflavonoids, scandenone and auriculasin. J. Ethnopharmacol. [Epub ahead of print]
  20. Malmberg AB, Yaksh TL. (1992). Antinociceptive Actions of Spinal Nonsteroidal Anti-inflammatory Agents on the Formalin Test in the Rat. J. Pharmacol. Exp. Ther. 263, 136-146
  21. Morton JF. (1987) Jamaica cherry. In: Morton IF (ed.) Fruits of Warm Climates., Miami, FL, pp. 65-69
  22. Ramesh M, Rao YN, Rao A V, Prabhakar MC, Rao CS, Muralidahar N, Reddy BM. (1998) Antinociceptive and anti-inflammatory activity of a flavonoid isolated from Caralluma attenuata. J. Ethnopharmacol. 62, 63-66 https://doi.org/10.1016/S0378-8741(98)00048-8
  23. Reanmongkol W, Subhadhirasakul S, Pairat C, Poungsawai C, Choochare W. (2002) Analgesic activity of Dyera cosiulaia extract in experimental animals. Songklanakarin J. Sci. Tech. 24, 227-234
  24. Su N, Jung Park E, Vigo JS, Graham JG, Cabiess F, Fong HH, Pezzuto JM, Kingom AD. (2003) Activityguided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay. Phytochemistry 63, 335-341 https://doi.org/10.1016/S0031-9422(03)00112-2
  25. Sulaiman MR, Somchit MN, Israf DA, Ahmad Z, Moin S. (2004) Antinociceptive effect of Melastoma malabathricum ethanolic extract in mice. Fitoterapia 75, 667-672 https://doi.org/10.1016/j.fitote.2004.07.002
  26. Tolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. (1992) The formalin test: an evaluation of the method. Pain 51, 5-17 https://doi.org/10.1016/0304-3959(92)90003-T
  27. Tripathi KD. (2001) Essentials of Medical Pharmacology (4th ed). Jaypee Brothers Medical Publishers, pp. 52-53, New Delhi, India
  28. Uzcategui B., Avila D, Suarez-Roca H, Quintero L, Ortega J, Gonzalez B. (2004) Anti-inflammatory, antinociceptive, and antipyretic effects of Lantana trifolia Linnaeus in experimental animals. Invest. Clin. 45, 317-322
  29. Verheij EWM, Coronel RE. (1992) (Eds) Edible fruits and nuts. Plant Resources of Southeast Asia, No.2, PROSEA, Boger, Indonesia
  30. Wilson SG, Bryant CD, Lariviere WR, Olsen MS, Giles BE, Chesler EJ, Mogil JS. (2003) The heritability of antinociception II: Pharmacogenetic mediation of three over-the-counter analgesics in mice. J. Pharmacol. Exp. Ther. 305, 755-764 https://doi.org/10.1124/jpet.102.047902
  31. Winter CA, Risley EA, Nuss GW. (1962) Carrageenaninduced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc. Soc. Exp. Biol. Med. 111, 544-547
  32. Zakaria ZA, Fatimah CA, Mat Jais AM, Zaiton H, Henie EFP, Sulaiman MR, Somchit MN, Thenamutha M, Kasthuri D. (2006b) The in vitro antibacterial activity of Muntingia calabura extracts. Int. J. Pharmacol. 2,290-293
  33. Zakaria ZA, Reezal I, Mat Jais AM, Marmin AHI, Sidek H, Husin SH, Rahim MHA, Sabtu L, Somchit MN, Sulaiman MR. (2006d). The anti-inflammatory, anti-pyretic and wound healing activities of Cocos nucijera (MATAG types) fresh juice and kernel extracts in experimental animals. J. Pharmacol. Toxicol. [in press]
  34. Zakaria ZA, Safarul M, Valsala R, Sulaiman MR, Fatimah CA, Somchit MN, Mat Jais AM. (2005) Influence of temperature on the opioid-mediated antinociceptive activity of Corthorus olitorius L. in mice. Naunyn Schmiedebergs Arch. Pharmacol. 372, 55-62 https://doi.org/10.1007/s00210-005-1089-8
  35. Zakaria ZA, Sulaiman MR, Mat Jais AM, Somchit MN, Kogilla VJ, Ganesh R, Fatimah CA. (2006c) The involvements of L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in Muntingia calabura aqueous extract antinociception in mice. Fundam. Clin. Pharmacol. [in press] https://doi.org/10.1111/j.1472-8206.2006.00412.x
  36. Zakaria ZA, Zaiton H, Henie EFP, Mat Jais AM, Kasthuri O, Thenamutha M, Othman FW, Nazaratulmawarina R, Fatimah CA. (2006a) The in vitro antibacterial activity of Cordiorus olitorius and Muntingia calabura extracts. J. Pharmacol. Taxicol. 1, 108-114

Cited by

  1. bark vol.47, pp.5, 2009, https://doi.org/10.1080/13880200902758824
  2. : A review of its traditional uses, chemical properties, and pharmacological observations vol.52, pp.12, 2014, https://doi.org/10.3109/13880209.2014.908397
  3. Antinociceptive activity of methanolic extract of Muntingia calabura leaves: further elucidation of the possible mechanisms vol.14, pp.1, 2014, https://doi.org/10.1186/1472-6882-14-63