DOI QR코드

DOI QR Code

The Study on Association of Calcium Channel SNPs with Adverse Drug Reaction of Calcium Channel Blocker in Korean

  • Chung, Myeon-Woo (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Bang, Sy-Rie (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Jin, Sun-Kyung (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Woo, Sun-Wook (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Lee, Yoon-Jung (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Kim, Young-Sik (College of Medicine, University of Ulsan) ;
  • Lee, Jong-Keuk (College of Medicine, University of Ulsan) ;
  • Lee, Sung-Ho (Department of Thoracic & Cardiovascular Surgery, Anam Hospital, Korea University) ;
  • Roh, Jae-Sook (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Chung, Hye-Joo (National Institute of Toxicological Research, Korea Food and Drug Administration)
  • 발행 : 2007.09.30

초록

Rapid advances in pharmacogenomic research have provided important information to improve drug selection, to maximize drug efficacy, and to minimize drug adverse reaction. The SNPs that are the most abundant type of genetic variants have been proven as valid biomarkers to give information on the prediction of pharmacokinetic/pharmacodynamic properties of drugs based on genotype. In order to elucidate a correlation between SNPs of calcium channel encoding gene and adverse reactions of calcium channel blockers, we investigated SNPs in CACNA1C gene known as a binding site of calcium channel blocker. 96 patients with hypertension who had taken or are taking an antihypertensive drug, 1,4-dihydropyridine (DHP) were included for analysis. These patients were composed of 47 patients with adverse drug reactions (ADR) such as edema from calcium channel blockers and 49 patients without ADR as a control group. The exons encoding the drug binding sites were amplified by PCR using specific primers, and SNPs were analyzed by direct sequencing. We found that there was no SNP in the exons encoding DHP binding site, but four novel SNPs in the exon-intron junction region. However, four novel SNPs were not associated with the ADR of calcium channel blockers. In conclusion, this study showed that ADR from calcium channel blockers may not be caused by SNPs of the binding sites of calcium channel blockers in CACNA1C gene.

키워드

참고문헌

  1. Aellig, W. H. (1998). Adverse reactions to antihypertensive therapy. Cardiovasc Drugs Ther 18(Suppl.): 55-58
  2. Barone, F. C., Feuerstein, G. Z. and Spera, R. P. (1997). Calcium channel blockers in cerebral ischaemia. Expert Opin Investig Drugs 6, 501-519 https://doi.org/10.1517/13543784.6.5.501
  3. Birnbaumer, L., Campbell, K. P., Catterall, W. A., Harpold, M. M., Hofmann, F., Horne, W. A., Mori, Y., Schwartz, A., Snutch, T. P. and Tanabe, T. (1994). The naming of voltagegated calcium channels. Neuron 13, 505-506 https://doi.org/10.1016/0896-6273(94)90021-3
  4. Dalen, P., Dahl, M. L., Roh, H. K., Tybring, G., Eichelbaum, M., Wilkinson, G. R. and Bertilsson, L. (2003). Disposition of debrisoquine and nortriptyline in Korean subjects in relation to CYP2D6 genotypes, and comparison with Caucasians. Br. J. Clin. Pharmacol. 55, 630-634 https://doi.org/10.1046/j.1365-2125.2003.01804.x
  5. De Leeuw, P.W. and Birkenhager, W. H. (2002). The effects of calcium channel blockers on cardiovascular outcomes: a review of randomised controlled trials. Blood Press 11, 71-78 https://doi.org/10.1080/08037050211260
  6. Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T. P., Tanabe, T. and Birnbaumer, L. (2000). Nomenclature of voltage-gated calcium channels. Neuron 25, 533-535 https://doi.org/10.1016/S0896-6273(00)81057-0
  7. Furukawa, T., Nukada, T., Suzuki, K., Fujita, Y., Mori, Y., Nishimura, M. and Yamanaka, M. (1997). Voltage and pH dependent block of cloned N-type Ca2+ channels by amlodipine. Br. J. Pharmacol 121, 1136-1140 https://doi.org/10.1038/sj.bjp.0701226
  8. Ginsburg, G. S., Konstance, R. P., Allsbrook, J. S. and Schulman, K.A. Implications of pharmacogenomics for drug development and clinical practice. Arch. Intern. Med. (2005). 165, 2331-2336 https://doi.org/10.1001/archinte.165.20.2331
  9. Guo, Y., Shafer, S., Weller, P., Usuka, J. and Peltz, G. (2005). Pharmacogenomics and drug development. Pharmacogenomics 6, 857-864 https://doi.org/10.2217/14622416.6.8.857
  10. Hering, S., Berjukow, S., Aczel, S. and Timin, E.N. (1998). $Ca^{2+}$ channel block and inactivation: common molecular determinants. Trends Pharmacol Sci 19, 439-443 https://doi.org/10.1016/S0165-6147(98)01258-9
  11. Hockerman, G. H., Peterson, B. Z., Johnson, B. D. and Catterall, W. A. (1997). Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. Toxicol. 37, 361-396 https://doi.org/10.1146/annurev.pharmtox.37.1.361
  12. Hofmann, F., Biel, M. and Flockerzi, V. (1994). Molecular basis for $Ca^{2+}$ channel diversity. Annu. Rev. Neurosci. 17, 399-418 https://doi.org/10.1146/annurev.ne.17.030194.002151
  13. Kim, Y. S., Park, H. S., Sunwoo, S., Byeon, J. J., Song, Y. M., Seo, H. G., Kim, C. H., Cheon, K. S., Yoo, S. M. and Lee, J. K. (2000). Short-term safety and tolerability of antihypertensive agents in Korean patients: an observational study. Pharmacoepidemiol. Drug Saf. 9, 603-609 https://doi.org/10.1002/pds.554
  14. Koytchev, R., Alken, R. G., Vlahov, V., Kirkov, V., Kaneva, R., Thyroff-Friesinger, U. and Rehak, E. (1998). Influence of the cytochrome P4502D6*4 allele on the pharmacokinetics of controlled-release metoprolol. Eur. J. Clin. Pharmacol. 54, 469-474 https://doi.org/10.1007/s002280050495
  15. Lee, J. K., Kim, H. T., Cho, S. M., Kim, K. H., Jin, H. J., Ryu, G. M., Oh, B., Park, C., Kimm, K. and Jo, S. A. (2003). Characterization of 458 single nucleotide polymorphisms of disease candidate genes in the Korean population. J. Hum. Genet. 48, 213-2 https://doi.org/10.1007/s10038-003-0011-9
  16. Lesko, L. J. and Woodcock, J. (2004). Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat. Rev. Drug. Discov. 3, 763-769 https://doi.org/10.1038/nrd1499
  17. Licinio, J. and Wong, M. -L. (2002). Pharmacogenomics : the search for individualized therapies Weinheim, Wiley-VCH
  18. Linder, M. W., Prough, R. A. and Valdes, R. (1997). Jr. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin. Chem. 43, 254-266
  19. Little, S. (2005). The impact of FDA guidance on pharmacogenomic data submissions on drug development. IDrugs 8, 648-650
  20. Liu, L., Fan, Q. I., El-Zaru, M. R., Vanderpool, K., Hines, R. N. and Marsh, J. D. (2000). Regulation of DHP receptor expression by elements in the 5'-flanking sequence. Am. J. Physiol Heart. Circ. Physiol. 278, H1153-1162 https://doi.org/10.1152/ajpheart.2000.278.4.H1153
  21. Mango, R., Vecchione, L., Raso, B., Borgiani, P., Brunetti, E., Mehta, J. L., Lauro, R., Romeo, F. and Novelli, G. (2005). Pharmacogenomics in cardiovascular disease: the role of single nucleotide polymorphisms in improving drug therapy. Expert Opin. Pharmacother. 6, 2565-2576 https://doi.org/10.1517/14656566.6.15.2565
  22. Marsh, S., and McLeod, H. L. (2006). Pharmacogenomics: from bedside to clinical practice. Hum. Mol. Genet. 15 Spec No 1, R89-93 https://doi.org/10.1093/hmg/ddl087
  23. Mason, R. P., Marche, P. and Hintze, T. H. (2003). Novel vascular biology of third-generation L-type calcium channel antagonists: ancillary actions of amlodipine. Arterioscler. Thromb. Vasc. Biol. 23, 2155-2163 https://doi.org/10.1161/01.ATV.0000097770.66965.2A
  24. Meyer, U. A. (2000). Pharmacogenetics and adverse drug reactions. Lancet 356, 1667-1671 https://doi.org/10.1016/S0140-6736(00)03167-6
  25. Muntwyler, J. and Follath, F. (2001). Calcium channel blockers in treatment of hypertension. Prog. Cardiovasc. Dis. 44, 207-216 https://doi.org/10.1053/pcad.2001.29096
  26. Nakagawa, K. and Ishizaki, T. (2000). Therapeutic relevance of pharmacogenetic factors in cardiovascular medicine. Pharmacol. Ther. 86, 1-28 https://doi.org/10.1016/S0163-7258(99)00066-2
  27. Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., Waxman, D.J., Waterman, M. R., Gotoh, O., Coon, M. J. and Estabrook, R. W. (1996). P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6, 1-42 https://doi.org/10.1097/00008571-199602000-00002
  28. Pequignot, M. O., Desguerre, I., Dey, R., Tartari, M., Zeviani, M., Agostino, A., Benelli, C., Fouque, F., Prip-Buus, C. and Marchant, D. (2001). New splicing-site mutations in the SURF1 gene in Leigh syndrome patients. J. Biol. Chem. 276, 15326-15329 https://doi.org/10.1074/jbc.M100388200
  29. Phillips, K. A., Veenstra, D. L., Oren, E., Lee, J. K. and Sadee, W. (2001). Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. J.A.M.A. 286, 2270-2279 https://doi.org/10.1001/jama.286.18.2270
  30. Pirmohamed, M. and Park, B. K. Genetic susceptibility to adverse drug reactions. Trends Pharmacol. Sci. 22, 298-305. (2001) https://doi.org/10.1016/S0165-6147(00)01717-X
  31. Regulla, S., Schneider, T., Nastainczyk, W., Meyer, H. E. and Hofmann, F. (1991). Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium-channel alpha 1 subunit. Embo. J. 10, 45-49
  32. Relling, M. V., Hancock, M. L., Rivera, G. K., Sandlund, J. T., Ribeiro, R. C., Krynetski, E. Y., Pui, C. H. and Evans, W. E. (1999). Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J. Natl. Cancer. Inst. 91, 2001-2008 https://doi.org/10.1093/jnci/91.23.2001
  33. Schmitz, G., Aslanidis, C. and Lackner, K. J. (2001). Pharmacogenomics: implications for laboratory medicine. Clin. Chim. Acta. 308, 43-53 https://doi.org/10.1016/S0009-8981(01)00424-7
  34. Severino, G. and Del Zompo, M. (2004). Adverse drug reactions: role of pharmacogenomics. Pharmacol. Res. 49, 363-373 https://doi.org/10.1016/j.phrs.2003.05.003
  35. Singer, D., Biel, M., Lotan, I., Flockerzi, V., Hofmann, F. and Dascal, N. (1991). The roles of the subunits in the function of the calcium channel. Science 253, 1553-1557 https://doi.org/10.1126/science.1716787
  36. Solus, J. F., Arietta, B. J., Harris, J. R., Sexton, D. P., Steward, J. Q., McMunn, C., Ihrie, P., Mehall, J. M., Edwards, T. L. and Dawson, E. P. (2004). Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics 5, 895-931 https://doi.org/10.1517/14622416.5.7.895
  37. Striessnig, J., Grabner, M., Mitterdorfer, J., Hering, S., Sinnegger, M. J. and Glossmann, H. (1998). Structural basis of drug binding to L $Ca^{2+}$ channels. Trends Pharmacol Sci 19, 108-115 https://doi.org/10.1016/S0165-6147(98)01171-7
  38. Suen, T. C. and Goss, P. E. (2001). Identification of a novel transcriptional repressor element located in the first intron of the human BRCA1 gene. Oncogene 20, 440-450 https://doi.org/10.1038/sj.onc.1204078
  39. Torpet, L.A., Kragelund, C., Reibel, J. and Nauntofte, B. (2004). Oral Adverse Drug Reactions to Cardiovascular Drugs. Crit Rev Oral. Biol. Med. 15, 28-46 https://doi.org/10.1177/154411130401500104
  40. Uneyama, H., Takahara, A., Dohmoto, H., Yoshimoto, R., Inoue, K. and Akaike, N. (1997). Blockade of N-type Ca2+ current by cilnidipine (FRC-8653) in acutely dissociated rat sympathetic neurones. Br. J. Pharmacol. 122, 37-42 https://doi.org/10.1038/sj.bjp.0701342