DOI QR코드

DOI QR Code

Characterization and Distribution of Transferrin from the Last Larval Haemolymph of Papilio xuthus

호랑나비 유충 혈림프 Transferrin의 특성과 분포

  • Shin, Myung-Ja (Dept. of Biological Science, Andong National University) ;
  • Kim, Kyoung-Keun (Dept. of radio-technology, Daegu Polytechnic College) ;
  • Kim, Jeong-Sook (Dept. of Biological Science, Andong National University) ;
  • Lim, Jae-Hwan (Dept. of Biological Science, Andong National University) ;
  • Seo, Eul-Won (Dept. of Biological Science, Andong National University)
  • 신명자 (안동대학교 자연과학대학 생명과학과) ;
  • 김경근 (대구산업정보대학 방사선과) ;
  • 김정숙 (안동대학교 자연과학대학 생명과학과) ;
  • 임재환 (안동대학교 자연과학대학 생명과학과) ;
  • 서을원 (안동대학교 자연과학대학 생명과학과)
  • Published : 2007.08.30

Abstract

Transferrin is a molecule carrying iron to store and maintain for iron homeostasis of living organisms. In this study, we have purified transferrin, as an iron-binding protein, from the last larval haemolymph of Papilio xuthus by KBr density gradient ultracentrifugation and gel filtration (superose 6 HR) using fast protein liquid chromatography (FPLC) and transferrin containing iron was identified by Ferene S staining. The purified haemolymph transferrin was shown to have molecular mass of 78 and 80 kDa and amino acid composition of transferrin was rich in aspartic acid, valine, leucine and glutamic acid. With immuno-diffusion assay, we confirmed the existence of the transferrin in the haemo-lymph and fat body by detection of visible and clear positive reaction. From the quantitative comparison by rocket immuno-electrophoresis process, the amount of transferrin were increased in the haemolymph of 3 days after pupation and the whole 5 days after pupation. Here, with biochemical and immunohistochemical analysis, we speculate the relationship of transferrin between the physical characteristics and distribution during metamorphosis of P. xuthus.

Transferrin은 저장된 철분자를 운반하고 살아있는 유기체에서 철의 항상성을 유지한다. 호랑나비의 종령 유충 혈림프내 철 운반 단백질인 transferrin을 KBr 밀도구배 초원심분리와 Superose 6 HR을 이용한 fast protein liquid chromatography법으로 분리 정제하였으며, transferrin의 조직에 따른 분포는 면역화학적 방법에 따라 확인하였다. 정제된 transferrin의 아미노산 조성은 아스파르트산(Asp), 발린(Val), 루이신(Leu), 글루타민(GIu)이 많이 존재하였으며, subunit의 분자량은 78, 80 kDa으로 확인되었다. Immuno-diffusion을 통해 각 조직에서 분포를 확인한 결과 혈림프와 지방체에서 transferrin이 전시기에 걸쳐 뚜렷한 동질성을 나타냈다. 또한 rocket immuno-electrophresis법에 의해 transferrin의 양적 분포를 살펴보면 혈림프에서 용화 3일과 용화 5일에 증가하였으며, 지방체에서는 전용기와 용화직후에 양적인 증가를 나타냈다.

Keywords

References

  1. Axelsen, N. Hand P. J. Svendsen. 1973. 'Reversed Rocket Immunoelectrophoresis,' in: A Manual of Quantitative Immunoelectrophoresis, (Axelsen, N. H, J. Kroll and B. Weeke, eds.) Scand. J. Immunol, 2, 155. https://doi.org/10.1111/j.1365-3083.1973.tb03797.x
  2. Bartfeld, N. S. and J. H Law. 1990a. Biochemical and molecular characterization of transferrin from Manduca sexta. pp. 125-130, In Hagedorn. H H, J. G. Hildebrand and J. H Law (eds.), Molecular Insect Science, Plenum Press, New York.
  3. Bartfeld, N. S. and J. H. Law. 1990b. Isolation and molecular cloning of transferrin from the tabacco hornworm, Manduca sexta. J. Biol. Chem. 265, 21684-21691.
  4. Capurro, M. L., P. Iughetti, P. E. M. Ribolla and A. G. Bianchi. 1996. Musca domeeiica haemolymph ferritin. Arch. Insect Biochem and Physiol. 32, 197-207. https://doi.org/10.1002/(SICI)1520-6327(1996)32:2<197::AID-ARCH4>3.0.CO;2-W
  5. Chung, M. C. M. 1985. A specific iron stain for iron-binding proteins in polyacrylamide gels: application to transferrin and lactoferrin. Anal. Biochem. 148, 498-502. https://doi.org/10.1016/0003-2697(85)90258-1
  6. Davis, B. J. 1964. Disc electrophoresis II. Methods and application to human serum proteins. Ann. N.Y. Acad. Sci., 121, 404-427. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  7. Huebers, H. A., E. Huebers, C. A Finch, B. A. Webb. J. W. Truman. L. M. Riddford. A. W. Martin and W. H. Massover. 1988. Iron binding proteins and their roles in the tobacco hornworm, Manduca Sexta. J. Comp. Physiol. Bio. 158, 291-300. https://doi.org/10.1007/BF00695327
  8. Jamroz, R. C., J. R. Gasdaska, J. Y. Bradfield and J. H. Law. 1993. Transferrin in a cockroach: molecular cloning, characterization, and suppression by juvenile hormone. Proc. Natl. Acad. Sci. 90, 1320-1324. https://doi.org/10.1073/pnas.90.4.1320
  9. Kurnura, T., S. Kumura and S. Natori. 1995. Molecular characterization of an insect transferrin and its selective incorporation into eggs during oogenesis. Eur. J. Biochem. 228, 229-235. https://doi.org/10.1111/j.1432-1033.1995.tb20254.x
  10. Laernmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage $T_4$. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  11. Lambert, L. A., H. Perry, P. J. Halbrooks and A B. Mason. 2005. Evolution of the transferrin family: Conservation of residues associated with iron and anion binding. Comp. Biochem. Physiol. 142, 129-141. https://doi.org/10.1016/j.cbpb.2005.07.007
  12. Lambert, L. A, H. Perry and T. J. Meehan. 2005. Evolution of duplications in the transferrin family of proteins. Comp. Biochem. Physiol. 140, 11-25
  13. Locke, M and H. Nichol. 1992. Iron economy in insects: transport, metabolism and storage. Annu. Rev. Entomol. 37, 195-215. https://doi.org/10.1146/annurev.en.37.010192.001211
  14. Nichol, H. K. and M. Locke. 1989. The characterization of ferritin in an insect. Insect Biochem. 19, 587-602. https://doi.org/10.1016/0020-1790(89)90024-3
  15. Ouchteriony, O. 1949. Antigen-antibody reactions in gel. Acta Path. Microbiol. Scand. 26, 507-515. https://doi.org/10.1111/j.1699-0463.1949.tb00751.x
  16. Palmour, R. M. and H. E. Sutton. 1971. Vertebrate transferrins, molecular weight, chemical compositions and iron-binding studies. Biochemistry 10, 4026-4032. https://doi.org/10.1021/bi00798a003
  17. Winzerling, J. J., P. Nez, J. Porath and J. H. Law. 1995. Rapid and efficient isolation of transferrin and ferritin from Manduca sexta. Insect Biochem. Mol. Biol. 25, 217-224. https://doi.org/10.1016/0965-1748(94)00058-P