DOI QR코드

DOI QR Code

Inhibitory Effects of Sasa borealis Leaves Extracts on Carbohydrate Digestive Enzymes and Postprandial Hyperglycemia

조릿대잎 추출문의 탄수화물 소화효소활성 저해 및 식후혈당강하효과

  • Hwang, Ji-Young (Dept. of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji-Sook (Dept. of Food Science and Nutrition, Pusan National University)
  • Published : 2007.08.30

Abstract

This study was designed to investigate whether Sasa borealis leaves extracts (SLE) may inhibit yeast ${\alpha}-glucosidase$ and ${\alpha}-amylase$ activities and postprandial hyperglycemia in STZ-induced diabetic mice. Freeze-dried SLE was extracted with 70% methanol and followed by a sequential fractionation with dicholoromethan, ethylacetate, butanol, and water. Both ethylacetate and butanol fractions showed high inhibitory activities against the ${\alpha}-glucosidase$ and ${\alpha}-amylase$ enzymes. The $IC_{50}$ of ethylacetate and butanol fractions against ${\alpha}-glucosidase$ were 0.54 and 0.63 mg/mL, respectively, indicating a greater inhibition effect than acarbose (0.68 mg/mL) (p<0.05). Likewise, the two fractions exhibited a smaller $IC_{50}$ against ${\alpha}-amylase$, compared with acarbose (p<0.05). However, the yield of ethylacetate fraction of SLE was relatively small. Postprandial blood glucose testing of normal mice and STZ-induced diabetic mice by starch soln. loading (2 g/kg B.W.) showed that postprandial blood glucose level at 30, 60, and 120 min were markedly decreased by single oral administration of SLE butanol fraction (200 mg/kg B.W.) in both normal (p<0.0l) and diabetic mice (p<0.0l). Furthermore, the incremental area under the curve (AUC) was significantly lowered via SLE administration (5,745 versus 12,435 $mg{\cdot}mim/dL$) in the diabetic mice (p<0.0l). The incremental AUC in normal mice corroborated the hypoglycemic effect of SLE (p<0.0l) found in the diabetic mice. These results suggest that SLE may delay carbohydrate digestion and thus glucose absorption. In addition, SLE may have the potential to prevent and treat diabetes via its ability on lowering postprandial hyperglycemia.

본 연구에서는 조릿대잎 추출물의 탄수화물 소화효소의 저해와 혈당강하효과를 조사하기 위해, 탄수화물 소화효소인 ${\alpha}-glucosidase$${\alpha}-amylase$의 저해활성과 STZ 유발 당뇨생쥐를 이용한 혈당강하효과를 측정하였다. 조릿대잎 메탄올 추출물은 0.5 mg/mL 농도에서 yeast ${\alpha}-glucosidase$ 활성을 18.61% 저해하였으며, 메탄올 추출물의 ethylacetate층은 48.46%, buthanol층은 41.91%의 저해활성을 나타내어 40.31%의 저해활성을 보인 acarbose보다 ${\alpha}-glucosidase$ 저해효과가 높은 것으로 나타냈다. 또한 메탄올 추출물은 0.5 mg/mL 농도에서 ${\alpha}-amylase$ 활성을 22.16% 저해하였으며, ethylacetate층은 56.31%, buthanol층은 43.66%의 저해활성을 나타내어 41.14%를 나타낸 acarbose보다 높은 저해활성을 나타냈다. 따라서 조릿대잎 추출물 중 ethylacetate층과 buthanol층은 탄수화물 소화효소인 ${\alpha}-glucosidase$${\alpha}-amylase$ 저해활성에서 제2형 당뇨병환자의 혈당 강하제로 처방되고 있는 acarbose보다 높은 저해능을 가진 것으로 나타났다. STZ으로 당뇨를 유발한 생쥐와 정상생쥐에게 시료의 수율 및 탄수화물 소화효소의 저해활성이 높은 buthanol층을 전분과 함께 경구 투여한 후 혈당 증가를 측정한 결과, 전분과 함께 조릿대 잎 추출물의 buthanol층을 경구 투여한 경우가 전분만 투여한 경우에 비해 투여 후 30, 60, 120분에 혈당 증가가 유의적으로 낮았으며(p<0.0l), 식후혈당증가 곡선의 면적에서도 대조군보다 유의적(p<0.0l) 으로 적음을 확인할 수 있었다. 이상의 연구 결과 조릿대잎 추출물중 ethylacetate층과 buthanol층은 acarbose보다 높은 ${\alpha}-glucosidase$, ${\alpha}-amylase$ 저해활성을 나타내었으며, 특히 buthanol층은 STZ 유발 당뇨생쥐를 통해 식후 혈당증가를 저하시키는 효과까지도 확인할 수 있었다.

Keywords

References

  1. Sung YA. 2000. The prevention of type 2 diabetes. J Korean Medical Assac 43: 1103-1109 https://doi.org/10.5124/jkma.2000.43.11.1103
  2. Park SY. 2005. Effects of web-based nutrition counseling on dietary behavior and serum levels of glucose and lipids in type II diabetic patients. MS Thesis. Pusan National University
  3. Defronzo RA. 1981. The effect of insulin on renal sodium metabolism. Diabetologia 21: 165-171 https://doi.org/10.1007/BF00252649
  4. Steiner G, Haynes F, Yoshino G. 1984. Hyperinsulinemia and in vivo very-low-density lipoprotein triglyceride kinetics. Am J Physio 246: 187-192
  5. Young IR, Stout RW. 1987. Effects of insulin and glucose on the cells of the arterial wall: Interaction of insulin with dibutyryl cyclic AMP and low density lipoprotein in arterial cells. Diabetes Metab 13: 301-306
  6. Yu HJ, Song OG. 1985. Dietary therapy for diabetes mellitus. Diabetes Mellitus 9: 21-25
  7. Heo GB. 1985. Exercise therapy for diabetes mellitus. Diabetes Mellitus 9: 5-10
  8. Koivisto VA. 1993. Insulin therapy in type II diabetes. Diabetes Care 16: 29-39 https://doi.org/10.2337/diacare.16.3.29
  9. Jenkins DJ, Wolever TM, Jenkins AL. 1988. Starchy foods and glycemic index. Diabetes Care 11: 149-159 https://doi.org/10.2337/diacare.11.2.149
  10. Haller H. 1998. The clinical importance of postprandial glucose. Diabetes Res Clin Pract 40: S43-S49 https://doi.org/10.1016/S0168-8227(98)00042-4
  11. Lebovitz HE. 1998. Postprandial hyperglycemic state: importance and consequences. Diabetes Res Clin Pract 40: S27-S28 https://doi.org/10.1016/S0168-8227(98)00039-4
  12. Bailey CJ. 1999. Insulin resistance and antidiabetic drugs. Biochem Phaumacol 58: 1511-1520 https://doi.org/10.1016/S0006-2952(99)00191-4
  13. Zhang BB, Moller DE. 2000. New approaches in the treatment of type 2 diabetes. Curr Opin Chem Biol 4: 461-467 https://doi.org/10.1016/S1367-5931(00)00103-4
  14. Tattersall R. 1993. $\alpha$-glucosidase inhibition as an adjunct to the treatment of type I diabetes mellitus. Diabet Med 10: 658-662
  15. Mooradian AD, Thurman JE. 1999. Drug therapy of postprandial hyperglycemia. Drugs 57: 19-29 https://doi.org/10.2165/00003495-199957010-00003
  16. Baron AD. 1998. Postprandial hyperglycemia and $\alpha$-glucosidase inhibitors. Diabetes Res Clin Pract 40: S54-S55 https://doi.org/10.1016/S0168-8227(98)00043-6
  17. Hanefeld M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J Diabetes Complications 12: 228-237 https://doi.org/10.1016/S1056-8727(97)00123-2
  18. Jeong EY. 2006. Effect of the Sasa borealis leaves extract on metabolic syndrome in C57BL/6J mice fed a high fat diet. MS Thesis. Chonnam National University
  19. Yoon KD, Kim CY, Huh H. 2000. The flavone glycosides of Sasa borealis. Kor J Pharmacogn 31: 224-227
  20. Im MS. 1984. Studies on pharmacological actions on Sasa borealis Makino. MS Thesis. Sook-myung Woman's University
  21. Ko BS, Jun DW, Jang JS, Kim JH, Park SM. 2006. Effect of Sasa borealis and white lotus roots and leaves on insulin action and secretion in vitro. Korean J Food Sci Technol 38: 114-120
  22. Watanabe H, Kobayashi A, Yamamoto T, Suzuki S, Hayashi H, Yamazaki N. 1990. Alterations of human erythrocyte membrane fluidity by oxygen-derived free radicals and calcium. 8: 507–514 https://doi.org/10.1016/0891-5849(90)90150-H
  23. Kim JI. 2003. Hypoglycemic effect of the methanol extract of soybean sprout in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 32: 921-925 https://doi.org/10.3746/jkfn.2003.32.6.921
  24. Asano N, Tomioka E, Kizu H, Matsui K. 1994. Sugars nitrogen in the ring isolated from the leaves of Morus bomhycis. Carbohydr Res 253: 235-245 https://doi.org/10.1016/0008-6215(94)80068-5
  25. Goldman A, Milat ML, Ducrot PH. 1990. Tropane derivatives from Calystegia sepium. Phytochemistry 29: 2125-2128 https://doi.org/10.1016/0031-9422(90)83019-W
  26. Nishioka T, Kawabata J, Aoyama Y. 1998 Baicalein, an alpha-glucosidase inhibitor from Scutellaria baicalensis. J Nat Prod 11: 1413-1415 https://doi.org/10.1021/np980163p
  27. Lau AL, Failla ML. 1984. Urinary excretion of zinc, copper and iron in the streptozotocin-diabetic rats. J Nutr 114: 224-233 https://doi.org/10.1093/jn/114.1.224
  28. Forman LJ, Estilow S, Lewis M, Vasilenko P. 1986. Streptozotocin diabetes alters immunoreactive beta-endorphin levles and pain perception after 8 wk in female rats. Diabetes 35: 1309-1313 https://doi.org/10.2337/diabetes.35.12.1309
  29. Inoue I, Takahashi K, Noji S, Awata T, Negishi K, Katayama S. 1997: Acarbose controls postprandial hyper- proinsulinemia in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Prac 36: 143-151 https://doi.org/10.1016/S0168-8227(97)00045-4
  30. Defronzo RA. 1981. The effect of insulin on renal sodium metabolism. Diabetologia 21: 165-171 https://doi.org/10.1007/BF00252649

Cited by

  1. [ α ]-Amylase Inhibitory Activity of Flower and Leaf Extracts from Buckwheat (Fagopyrum esculentum) vol.37, pp.1, 2008, https://doi.org/10.3746/jkfn.2008.37.1.42
  2. Comparison of Antioxidant and Physiological Properties of Jerusalem Artichoke Leaves with Different Extraction Processes vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.068
  3. Sasa borealis leaves extract improves insulin resistance by modulating inflammatory cytokine secretion in high fat diet-induced obese C57/BL6J mice vol.4, pp.2, 2010, https://doi.org/10.4162/nrp.2010.4.2.99
  4. Protective Effects of Sasa Borealis Leaves Extract on High Glucose-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells vol.39, pp.12, 2010, https://doi.org/10.3746/jkfn.2010.39.12.1753
  5. Comparison of Antimicrobial and Antioxidant Activities by Different Extraction Methods in Korean Bamboos vol.27, pp.2, 2012, https://doi.org/10.7841/ksbbj.2012.27.2.131
  6. Antioxidant Activities of Extracts from Different Parts of Sasa borealis vol.31, pp.6, 2016, https://doi.org/10.6116/kjh.2016.31.6.45.
  7. Isolation and Identification of α-Glucosidase Inhibitory Compounds, Hyperoside, and Isoquercetin from Eleutherococcus senticosus Leaves vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1858
  8. Antioxidant activity of Bamboo powder and its immunoreactivity in the pig vol.37, pp.2, 2014, https://doi.org/10.7853/kjvs.2014.37.2.111
  9. Effects ofSasa BorealisLeaf Extract on the Glucose Tolerance of Major Foods for Carbohydrate vol.43, pp.3, 2010, https://doi.org/10.4163/kjn.2010.43.3.215
  10. Comparison of antioxidant, α-glucosidase inhibition and anti-inflammatory activities of the leaf and root extracts ofSmilax chinaL. vol.46, pp.4, 2013, https://doi.org/10.4163/jnh.2013.46.4.315
  11. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet vol.2017, 2017, https://doi.org/10.1155/2017/4380721
  12. Sasa borealisextract exerts an antidiabetic effect via activation of the AMP-activated protein kinase vol.7, pp.1, 2013, https://doi.org/10.4162/nrp.2013.7.1.15
  13. Antioxidant and Antiobesity Activity of Natural Color Resources vol.24, pp.6, 2014, https://doi.org/10.5352/JLS.2014.24.6.633
  14. Inhibitory Effects of Sasa borealis on Mechanisms of Adipogenesis vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.837
  15. Antioxidant Activities of Bamboo (Sasa Borealis) Leaf Extract according to Extraction Solvent vol.38, pp.12, 2009, https://doi.org/10.3746/jkfn.2009.38.12.1640
  16. Antioxidant and Antiobesity Activities of Various Color Resources Extracted from Natural Plants vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.165
  17. Anti-oxidative and Anti-inflammatory Activities of Sasa borealis Extracts vol.49, pp.3, 2015, https://doi.org/10.14397/jals.2015.49.3.145
  18. Wrinkle Improvement Effect of Silica Extracted from Domestic Bamboo Stems vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.293
  19. 한약재의 물 추출물이 당대사 관련 효소와 항산화 활성에 관한 연구 vol.37, pp.5, 2008, https://doi.org/10.3746/jkfn.2008.37.5.542
  20. 조릿대의 잎과 줄기 추출물 분획의 염증 및 비만 억제 효과 비교 vol.30, pp.4, 2007, https://doi.org/10.15188/kjopp.2016.08.30.4.229
  21. Inhibitory Effect of Jeju Tea Extracts and Vanadate on Postprandial Hyperglycemia and Hypertension, and In Vitro Study vol.52, pp.4, 2007, https://doi.org/10.15324/kjcls.2020.52.4.398
  22. Anti-diabetic and Lipid Profile Effect of Astragalus membranaceus (Fisch.) Bunge Fermented by Aspergillus awamori in db/db Mice vol.29, pp.4, 2021, https://doi.org/10.7783/kjmcs.2021.29.4.263