배의 생장시기에 따른 페놀성물질과 펙틴의 변화

Changes of Phenolic Compounds and Pectin in Asian Pear Fruit during Growth

  • 장선 (연변대학교 농학원 식품과학계) ;
  • 이범수 (연변대학교 농학원 식품과학계) ;
  • 은종방 (전남대학교 식품공학과 농업과학기술연구소)
  • Zhang, Xian (Department of Food Science and Engineering, Yanbian University) ;
  • Lee, Fan-Zhu (Department of Food Science and Engineering, Yanbian University) ;
  • Eun, Jong-Bang (Department of Food Science and Technology and Institute Agricultural Science and Technology, Chonnam National University)
  • 발행 : 2007.02.28

초록

배 생산자원의 충분한 이용과 부가가치 증대를 위한 개발을 목적으로 생장시기에 따른 부위별 페놀성물질과 과육의 펙틴 변화를 측정하였다. 배의 생장시기에 따라 과피, 과육, 과심부의 총페놀성물질의 함량은 감소하는 경향을 보여 생장초기 과피에서는 20.61-22.98mg/g, 과육에서는 0.87-1.23mg/g, 과심부에서는 6.39-37.96mg/g으로 함량이 가장 높았다. 동일한 품종내에서 대부분 시기에 걸쳐 과피중의 총페놀성물질의 함량이 가장 높았고 과육의 함량이 가장 낮았다. 생장초기 3품종과 각 부위에서 모두 arbutin, chlorogenic acid, epicatechin이 검출되었고 과실이 성숙됨에 따라 과피와 과심부에서는 caffeic acid, catechin 그리고 4-hydroxymethyl benzoic acid(4-HMBA)도 검출되었으며 그 중 arbutin이 가장 많은 양을 차지하였다. 배 과육의 총펙틴 함량은 알코올 불용성 고형분(AIS)의 감소와 함께 생장초기 약 6mg/g에서 급격히 감소하다가 그 이후로 서서히 감소하였다. 생장초기 hydrochloric acid-soluble pectin(HSP)의 함량이 3.21-3.45mg/g으로 가장 많았고 또한 과실의 생장에 따라 감소하였으며 AIS water-solubel pectin(WSP)의 증가가 가장 컸다. 따라서 배의 성숙된 과실에 비하여 미숙한 과실이, 과육에 비하여 과피가 기능성식품소재 개발에 더 유용할 것으로 생각되었다. 현재 미이용되고 있는 미숙과나 낙과 등의 과피를 이용하여 알부틴과 같은 고부가가치 물질을 추출하여 기능성 물질로의 이용을 위해 앞으로 추출 방법 등의 연구를 수행할 예정이다.

The changes in phenolic compounds and pectin content were investigated during the growth of 3 cultivars (Hosui, Niitaka and Chuwhangbae) of Asian pear (Pyrus pyrifolria) fruits. The amounts of total phenolic compounds in peel, flesh and core was 20.61-22.98mg/g, 0.87-1.23mg/g and 6.39-37.96mg/g during early growth, respectively, and decreased with pear growth. Arbutin, chlorogenic acid and epicatechin were detected in each part of all three cultivars during early growth; of these, arbutin content was the highest. Caffeic acid, catechin and 4-hydroxymethyl benzoic acid were detected in the peel and core during the ripening process. The total pectin content in the flesh of Hosui, Niitaka, and Chuwhangbae cultivars decreased from 5.93mg/g, 5.99mg/g and 5.40mg/g to 1.07mg/g, 1.60mg/g and 1.63mg/g, respectively. Of the soluble pectins, the hydrochloric acid-soluble pectin content was the highest, 3.21-3.45mg/g, and decreased during growth.

키워드

참고문헌

  1. Larrauri JA, Ruperez P, Saura-Calixto F. Pineapple shell as a source of dietary fiber with associated polyphenols. J. Agr. Food Chem. 45: 4028-4031 (1997) https://doi.org/10.1021/jf970450j
  2. Jimenez-Escrig A, Rincon M, Pulido R, Saura-Calixto F. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J. Agr. Food Chem. 49: 5489-5493 (2001) https://doi.org/10.1021/jf010147p
  3. Jung GT, Ju IO, Ryu J, Choi JS, Choi YG. Chemical components and physiological activities of thinned apple, pear and peach. Korean J. Food Preserv. 9: 391-395 (2002)
  4. Kwon YJ, Kwon JH, Park KH, Park YK, Yang HC. Sikpum Hwahak. Youngji Munhwasa, Seoul, Korea. pp. 77-85 (1998)
  5. Kim JH. Bae Sinjabae Gisul. Ohsung Chulpansa, Seoul, Korea. pp. 25-79 (1998)
  6. Escarpa A, Gonzalez MC. Fast separation of (poly)phenolic compounds from apples and pears by high-performance liquid chromatography with diode-array detection. J. Chromatogr. A 830: 301-309 (1999) https://doi.org/10.1016/S0021-9673(98)00893-0
  7. Oleszek W, Amot MJ, Aubert SY. Identification of some phenolics in pear fruit. J. Agr. Food Chem. 42: 1261-1265 (1994) https://doi.org/10.1021/jf00042a002
  8. Blankenship SM, Richardson DG. Changes in phenolic acids and internal ethylene during long-term cold storage of pears. J. Am. Soc. Hort. Sci. 110: 336-339 (1985)
  9. Ranadive AS, Haard NF. Changes in polyphenolics on ripening of selected pear varieties. J. Sci. Food Agr. 22: 86-89 (1971) https://doi.org/10.1002/jsfa.2740220211
  10. Seo JH, Hwnag YS, Chun JP, Lee JC. Changes of phenolic compounds and occurrence of skin browning and characterization of partially purified polyphenol oxidases in oriental pear fruits. J. Korean Soc. Hort. Sci. 42: 184-188 (2001)
  11. Yoo WJ, Kim DH, Lee DH, Byun JK. Changes in respiration rates, cell wall components and their hydrolase activities during the ripening of 'Whangdeumbae' pear fruit. J. Korean Soc. Hort, Sci. 43: 43-46 (2002)
  12. Ben-Arie R, Sonego L. Changes in pectic substances in ripening pears. J. Am. Soc. Hort. Sci. 104: 500-505 (1979)
  13. Zhang X, Na CS, Kim JS, Lee FZ, Eun JB. Changes in dietary fiber content of flesh and peel in three cultivars of Asian pears during growth. Food Sci. Biotechnol. 12: 358-364 (2003)
  14. AOAC. Official Methods of Analysis of AOAC IntI. 13th ed. Association of Official Analytical Communities, Washington DC, USA (1980)
  15. Andrade PB, Carvalho ARF, Seabra RM, Ferreira MA. A previous study of phenolic profiles of quince, pear, and apple purees by HPLC diode array detection for the evaluation of quince puree genuineness. J. Agr. Food Chem. 46: 968-972 (1998) https://doi.org/10.1021/jf970571j
  16. Rouse AH. Seasonal changes occurring in the pectinesterase activity and pectic constituents of the component parts of citrus fruits. I. Valencia oranges. J. Food Sci. 27: 419-425 (1962) https://doi.org/10.1111/j.1365-2621.1962.tb00120.x
  17. Manabe M, Naohara J. Properties of pectin in Satsuma mandarin fruits (Citrus unshiu Marc.). Jpn. J. Food Ind. 33: 602-608 (1986)
  18. McCready RM, McComb EA. Extraction and determination of total pectic materials fruits. Anal. Chem. 24: 1986-1988 (1952) https://doi.org/10.1021/ac60072a033
  19. Blumenlaantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  20. Kintner PK, Van Buren JP. Carbohydrate interference and its correction in pectin analysis using the m-hydroxydiphenyl method. J. Food Sci. 47: 756-759 (1982) https://doi.org/10.1111/j.1365-2621.1982.tb12708.x
  21. Kim JH. Studies on the fractors of skin browning during storage and its control method in Imamura-aki pear (Pyrus serotina Rehder). J. Korean Soc. Hort. Sci. 16: 1-25 (1975)
  22. Wilkinson BG. Physiological disorders of fruit after harvesting. pp. 537-553 In: The biochemistry of fruit and products. Hulme AC (ed.). Academic Press, New York, USA (1970)
  23. Kim SB. Studies on the pathogenic fungus, chemical control and resistance of apple rot disease caused by Botryosphaeria dothidea. PhD thesis, Wonkwang University, Iksan, Korea (1988)
  24. Ryugo K. Seasonal trends of titratable acids, tannins and polyphenolic compounds, and cell wall constituents in oriental pear fruit(Pyrus serotina, Rehd). J. Agr. Food Chem. 17: 43-47 (1969) https://doi.org/10.1021/jf60161a001
  25. Machida Y. Studies on texture of pear fruit. I. Texture of canned Bartlett pears processed from raw materials obtained from different region. Part 2. Cell-wall substances of parenchyma cells. Report Hiratzuka Hort. Exp. Sta. A-4: 107-124 (1965)
  26. Kang HK, Yoo YK, Lee SK. Effects of prestorage heat treatment on changes of phenolic compound contents and incidence of skin blackening in 'Niitaka' pear fruits during cold storage. J. Korean Soc. Hort. Sci. 44: 197-200 (2003)
  27. Sannomaru YK, Katayama O, Kashimura YK, Kaneko KY. Changes in polyphenol content and polyphenoloxidase activity of apple fruits during ripening process. J. Jpn. Soc. Food Sci. Tech. 45: 37-43 (1998) https://doi.org/10.3136/nskkk.45.37
  28. Ito S. Science of Fruit. Jyususyoten, Tokyo, Japan. pp, 23-111 (1991)
  29. Chun JP, Hwang YS, Lee JC, Huber DJ. Cell wall component changes during maturation and storage in 'Tsugaru' and 'Fuji' apple fruits. J. Korean Soc. Hort. Sci. 40: 705-710 (1999)
  30. Yamaki S, Machida Y, Kakiuchi N. Changes in cell wall polysaccharides and monosaccahrides during development and ripening of Japanese. Plant Cell Physiol. 20: 311-321 (1979) https://doi.org/10.1093/oxfordjournals.pcp.a075815