DOI QR코드

DOI QR Code

히스톤 라이신 메틸화

Histone Lysine Methylation

  • 곽상준 (단국대학교 의과대학 생화학교실)
  • Kwak, Sahng-June (Department of Biochemistry, College of Medicine, Dankook University)
  • 발행 : 2007.03.30

초록

유핵세포의 게놈(genome)은 단백-DNA복합체인 염색질(chromatin)의 형태로 존재하는데, 생명현상을 유지하기 위해서는 생명체 또는 세포가 처한 상황에 맞게 염색질의 구조를 변화시키는 역동적인 조절기전이 필요하다. 염색질을 구성하는 기본단위는 히스톤 8량체 (histone octamer)를 포함하는 뉴클레오좀(nucleosome)이다. 히스톤 단백에는 여러 종류의 공유결합성 수식이 일어나는데, 그 중 하나가 라이신 잔기(lysine residue)에 일어나는 메틸화이다. 최근 수년간의 연구로 여러 개의 히스톤 라이신 메틸화효소(histone lysine methyltransferase, HKMT), 이에 결합하는 염색질단백 및 메틸화와 관련된 후생유전학적 현상이 밝혀졌으며, 특히 정밀한 연구방법을 동원한 다방면의 실험을 통하여 비록 자세한 기전과 전체적인 윤곽의 규명은 미흡하더라도 라이신 메틸화가 후생유전학적 변화를 초래하는 일부 과정이 규명 되었다. 또한 여러 종류의 라이신 탈메틸화효소가 최근에 발견됨에 따라, 아세틸화, 인산화등 다른 공유결합성 수식보다는 상대 적으로 안정되더라도, 히스톤 메 틸화로 유발되는 후생유전학적 변화가 불가역성이 아님을 알게 되었다.

Our genome exists in the form of chromatin, and its structural organization should be precisely regulated with an appropriate dynamic nature for life. The basic unit of chromatin is a nucleosome, which consists of a histone octamer. These nucleosomal histones are subject to various covalent modifications, one of which is methylation on certain lysine residues. Recent studies in histone biology identified many histone Iysine methyltransferases (HKMTs) responsible for respective lysine residues and uncovered various kinds of involved chromatin associating proteins and many related epigenetic phenotypes. With the aid of highly precise experimental tools, multi-disciplinary approaches have widened our understanding of how lysine methylation functions in diverse epigenetic processes though detailed mechanisms remain elusive. Still being considered as a relatively more stable mark than other modifications, the recent discovery of lysine demethylases will confer more flexibility on epigenetic memory transmitted through histone lysine methylation. In this review, advances that have been recently observed in epigenetic phenotypes related with histone lysine methylation and the enzymes for depositing and removing the methyl mark are provided.

키워드

참고문헌

  1. Allfrey, V. G., R. Faulkner and A. E. Mirsky. 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51, 786-794 https://doi.org/10.1073/pnas.51.5.786
  2. Azuara, V., P. Perry, S. Sauer, M. Spivakov, H. F. Jorgensen, R. M. John, M. Gouti, M. Casanova, G. Warnes, M. Merkenschlager and A. G. Fisher. 2006. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532-538 https://doi.org/10.1038/ncb1403
  3. Bannister, A. J., P. Zegerman, J. F. Partridge, E. A. Miska, J. O. Thomas, R. C. Allshire and T. Kouzarides. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120-124 https://doi.org/10.1038/35065138
  4. Bernstein, B. E., T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S. L. Schreiber and E. S. Lander. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326 https://doi.org/10.1016/j.cell.2006.02.041
  5. Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21 https://doi.org/10.1101/gad.947102
  6. Boyer, L. A., K. Plath, J. Zeitlinger, T. Brambrink, L. A. Medeiros, T. I. Lee, S. S. Levine, M. Wernig, A. Tajonar. M. K. Ray, G. W. Bell, A. P. Otte, M. Vidal, D. K. Gifford, R. A. Young and R. Jaenisch. 2006. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349-353 https://doi.org/10.1038/nature04733
  7. Carrozza, M. J., B. Li, L. Florens, T. Suganuma, S. K. Swanson, K. K. Lee, W. J. Shia, S. Anderson, J. Yates, M. P. Washburn and J. L. Workman. 2005. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581-592 https://doi.org/10.1016/j.cell.2005.10.023
  8. Cheng, X., R. E. Collins and X. Zhang. 2005. Structural and sequence motifs of protein (histone) methylation enzymes. Annu. Rev. Biophys. Biomol. Struct. 34. 267-294 https://doi.org/10.1146/annurev.biophys.34.040204.144452
  9. de Napoles, M., J. E. Mermoud, R. Wakao, Y. A. Tang, M. Endoh, R. Appanah, T. B. Nesterova, J. Silva, A. P. Otte, M. Vidal, H. Koseki and N. Brockdorff. 2004. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663-676 https://doi.org/10.1016/j.devcel.2004.10.005
  10. Eissenberg, J. C. and S. C. Elgin. 2000. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10, 204-210 https://doi.org/10.1016/S0959-437X(00)00058-7
  11. Feng, Q., H. Wang, H. H. Ng, H. Erdjument-Bromage, P. Tempst, K. Struhl and Y. Zhang. 2002. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12, 1052-1058 https://doi.org/10.1016/S0960-9822(02)00901-6
  12. Fischle, W., Y. Wang and C. D. Allis. 2003. Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172-183 https://doi.org/10.1016/S0955-0674(03)00013-9
  13. Fodor, B. D., S. Kubicek, M. Yonezawa, R. J. O'Sullivan, R. Sengupta, L. Perez-Burgos, S. Opravil, K. Mechtler, G. Schotta and T. Jenuwein. 2006. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev. 20, 1557-1562 https://doi.org/10.1101/gad.388206
  14. Hansen, J. C. 2002. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct. 31, 361-392 https://doi.org/10.1146/annurev.biophys.31.101101.140858
  15. Heard, E. 2004. Recent advances in X-chromosome inactivation. Curr. Opin. Cell Biol. 16, 247-255 https://doi.org/10.1016/j.ceb.2004.03.005
  16. Huyen, Y., O. Zgheib, R. A. Ditullio Jr., V. G. Gorgoulis, P. Zacharatos, T. J. Petty, E. A. Sheston, H. S. Mellert, E. S. Stavridi and T. D. Halazonetis. 2004. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406-411 https://doi.org/10.1038/nature03114
  17. Jenuwein, T. and C. D. Allis. 2001. Translating the histone code. Science 293, 1074-1080 https://doi.org/10.1126/science.1063127
  18. Jenuwein, T., G. Laible, R. Dorn and G. Reuter. 1998. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol. Life Sci. 54, 80-93 https://doi.org/10.1007/s000180050127
  19. Jin, J., Y. Cai, B. Li, R. C. Conaway, J. L. Workman, J. W. Conaway and T. Kusch. 2005. In and out: histone variant exchange in chromatin. Trends Biochem. Sci. 30, 680-687 https://doi.org/10.1016/j.tibs.2005.10.003
  20. Jones, P. A. and D. Takai. 2001. The role of DNA methylation in mammalian epigenetics. Science 293, 1068-1070 https://doi.org/10.1126/science.1063852
  21. Kornberg, R. D. 1974. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868-871 https://doi.org/10.1126/science.184.4139.868
  22. Lachner, M., D. O'Carroll, S. Rea, K. Mechtler and T. Jenuwein. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120 https://doi.org/10.1038/35065132
  23. Lee, T. I., R. G. Jenner, L. A. Boyer, M. G. Guenther, S. S. Levine, R. M. Kumar, B. Chevalier, S. E. Johnstone, M. F. Cole, K. Isono, H. Koseki, T. Fuchikami, K. Abe, H. L. Murray, J. P. Zucker, B. Yuan, G. W. Bell, E. Herbolsheimer, N. M. Hartnett, K. Sun, D. T. Odom, A. P. Otte, T. L. Volkert, D. P. Bartel, D. A. Melton, D. K. Gifford, R. Jaenisch and R. A. Young. 2006. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301-313 https://doi.org/10.1016/j.cell.2006.02.043
  24. Lewis, A., K. Mitsuya, D. Umlauf, P. Smith, W. Dean, J. Walter, M. Higgins, R. Feil and W. Reik. 2004. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat. Genet. 36, 1291-1295 https://doi.org/10.1038/ng1468
  25. Li, H., S. Ilin, W. Wang, E. M. Duncan, J. Wysocka, C. D. Allis and D. J. Patel. 2006. Molecularbasis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91-95 https://doi.org/10.1038/nature04802
  26. Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent and T. J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 ${\AA}$ resolution. Nature 389, 251-260 https://doi.org/10.1038/38444
  27. Mager, J., N. D. Montgomery, F. P. de Villena and T. Magnuson. 2003. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat. Genet. 33, 502-507 https://doi.org/10.1038/ng1125
  28. Mak, W., T. B. Nesterova, M. de Napoles, R. Appanah., S. Yamanaka, A. P. Otte and N. Brockdorff. 2004. Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666-669 https://doi.org/10.1126/science.1092674
  29. Malik, H. S. and S. Henikoff. 2003. Phylogenomics of the nucleosome. Nat. Struct. Biol. 10, 882-891 https://doi.org/10.1038/nsb996
  30. Marino-Ramirez, L., B. Hsu, A. D. Baxevanis and D. Landsman. 2006. The Histone Database: a comprehensive resource for histones and histone fold-containing proteins. Proteins 62, 838-842
  31. Montgomery, N. D., T. Magnuson and S. Bultman. 2005. Epigenetic mechanisms of cellular memory during development. pp. 69-79, In Lanza, R., J. Gearhart, B. Hogan, D. A. Melton, R. Pedersen, J. Thomson, E. D. Thomas and M. E. West (eds.), Essentials of Stem Cell Biology, Academic Press, SD
  32. Motamedi, M. R., A. Verdel, S. U. Colmenares, S. A. Gerber, S. P. Gygi and D. Moazed. 2004. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789-802 https://doi.org/10.1016/j.cell.2004.11.034
  33. Ng, H. H., Q. Feng, H. Wang, H. Erdjument-Bromage, P. Tempst, Y. Zhang and K. Struhl. 2002. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518-1527 https://doi.org/10.1101/gad.1001502
  34. Okamoto, I., A. P. Otte, C. D. Allis, D. Reinberg and E. Heard. 2004. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644-649 https://doi.org/10.1126/science.1092727
  35. Oudet, P., M. Gross-Bellard and P. Chambon. 1975. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4, 281-300 https://doi.org/10.1016/0092-8674(75)90149-X
  36. Peters, A. H., S. Kubicek, K. Mechtler, R. J. O'Sullivan, A. A. Derijck, L. Perez-Burgos, A. Kohlmaier, S. Opravil, M. Tachibana, Y. Shinkai, J. H. Martens and T. Jenuwein. 2003. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577-1589 https://doi.org/10.1016/S1097-2765(03)00477-5
  37. Peters, A. H., D. O'Carroll, H. Scherthan, K. Mechtler, S. Sauer, C. Schofer, K. Weipoltshammer, M. Pagani, M. Lachner, A. Kohlmaier, S. Opravil, M. Doyle, M. Sibilia and T. Jenuwein. 2001. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323-337 https://doi.org/10.1016/S0092-8674(01)00542-6
  38. Pidoux, A. L. and R. C. Allshire. 2005. The role of heterochromatin in centromere function. Philos. Trans. R. Soc. Lend. B. Biol. Sci. 360, 569-579 https://doi.org/10.1098/rstb.2004.1611
  39. Plath, K., J. Fang, S. K. Mlynarczyk-Evans, R. Cao, K. A. Worringer, H. Wang, C. C. de la Cruz, A. P. Otte, B. Panning and Y. Zhang. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131-135 https://doi.org/10.1126/science.1084274
  40. Pray-Grant, M. G., J. A. Daniel, D. Schieltz, J. R. Yates 3rd and P. A. Grant. 2005. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434-438 https://doi.org/10.1038/nature03242
  41. Rea, S., F. Eisenhaber, D. O'Carroll, B. D. Strahl, Z. W. Sun, M. Schmid, S. Opravil, K. Mechtler, C. P. Pouting, C. D. Allis and T. Jenuwein. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-599 https://doi.org/10.1038/35020506
  42. Rice, J. C. and C. D. Allis. 2001. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell Biol. 13, 263-273 https://doi.org/10.1016/S0955-0674(00)00208-8
  43. Ringrose, L. and R. Paro, 2004. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413-443 https://doi.org/10.1146/annurev.genet.38.072902.091907
  44. Santos-Rosa, H. and C. Caldas. 2005. Chromatin modifier enzymes, the histone code and cancer. Eur. J. Cancer 41, 2381-2402 https://doi.org/10.1016/j.ejca.2005.08.010
  45. Sarma, K. and D. Reinberg. 2005. Histone variants meet their match. Nat. Rev. Mol. Cell Biol. 6, 139-149 https://doi.org/10.1038/nrm1567
  46. Schotta, G., M. Lachner, K. Sarma, A. Ebert, R. Sengupta, G. Reuter, D. Reinberg and T. Jenuwein. 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251-1262 https://doi.org/10.1101/gad.300704
  47. Shi, X., T. Hong, K. L. Walter, M. Ewalt, E. Michishita, T. Hung, D. Carney, P. Pena, F. Lan, M. R. Kaadige, N. Lacoste, C. Cayrou, F. Davrazou, A. Saha, B. R. Cairns, D. E. Ayer, T. G. Kutateladze, Y. Shi, J. Cote, K. F. Chua and O. Gozani. 2006. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96-99 https://doi.org/10.1038/nature04835
  48. Shi, Y., F. Lan, C. Matson, P. Mulligan, J. R. Whetstine, P. A. Cole, R. A. Casero and Y. Shi. 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941-953 https://doi.org/10.1016/j.cell.2004.12.012
  49. Sims 3rd, R. J., S. S. Mandal and D. Reinberg. 2004. Recent highlights of RNA-polymerase-II-mediated transcription. Curr. Opin. Cell Biol. 16, 263-271 https://doi.org/10.1016/j.ceb.2004.04.004
  50. Sims 3rd, R. J., K. Nishioka and D. Reinberg. 2003. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629-639 https://doi.org/10.1016/j.tig.2003.09.007
  51. Solter, D., T. Hiiragi, A. V. Evsikov, J. Moyer, W. N. De Vries, A. E. Peaston and B. B. Knowles. 2004. Epigenetic mechanisms in early mammalian development. Cold Spring Harb. Symp. Quant. Biol. 69, 11-17 https://doi.org/10.1101/sqb.2004.69.11
  52. Spector, D. L. 2003. The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem. 72, 573-608 https://doi.org/10.1146/annurev.biochem.72.121801.161724
  53. Strahl, B. D. and C. D. Allis. 2000. The language of covalent histone modifications. Nature 403, 41-45 https://doi.org/10.1038/47412
  54. Tachibana, M., J. Ueda, M. Fukuda, N. Takeda, T. Ohta, H. Iwanari, T. Sakihama, T. Kodama, T. Hamakubo and Y. Shinkai. 2005. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19, 815-826 https://doi.org/10.1101/gad.1284005
  55. Taddei, A., F. Hediger, F. R. Neumann and S. M. Gasser. 2004. The function of nuclear architecture: a genetic approach. Annu. Rev. Genet. 38, 305-345 https://doi.org/10.1146/annurev.genet.37.110801.142705
  56. Trewick, S. C., P. J. McLaughlin and R. C. Allshire. 2005. Methylation: lost in hydroxylation? EMBO. Rep. 6, 315-320 https://doi.org/10.1038/sj.embor.7400379
  57. Tsukada, Y., J. Fang, H. Erdjument-Bromage, M. E. Warren, C. H. Borchers, P. Tempst and Y. Zhang. 2006. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811-816 https://doi.org/10.1038/nature04433
  58. Turner, B. M. 1993. Decoding the nucleosome. Cell 75, 5-8 https://doi.org/10.1016/0092-8674(93)90673-E
  59. Turner, B. M. 2002. Cellular memory and the histone code. Cell 111, 285-291 https://doi.org/10.1016/S0092-8674(02)01080-2
  60. Turner, B. M., A. J. Birley and J. Lavender. 1992. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69, 375-384 https://doi.org/10.1016/0092-8674(92)90417-B
  61. Umlauf, D., Y. Goto, R. Cao, F. Cerqueira, A. Wagschal, Y. Zhang and R. Feil. 2004. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat. Genet. 36, 1296-1300 https://doi.org/10.1038/ng1467
  62. Vakoc, C. R., S. A. Mandat, B. A. Olenchock and G. A. Blobel. 2005. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381-391 https://doi.org/10.1016/j.molcel.2005.06.011
  63. Volpe, T. A., C. Kidner, I. M. Hall, G. Teng, S. J. Grewal and R. A. Martienssen. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833-1837 https://doi.org/10.1126/science.1074973
  64. Wang, J., J. Mager, Y. Chen, E. Schneider, J. C. Cross, A. Nagy and T. Magnuson. 2001. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat. Genet. 28, 371-375 https://doi.org/10.1038/ng574
  65. Waterborg, J. H. 1993. Dynamic methylation of alfalfa histone H3. J. Biol. Chem. 268, 4918-4921
  66. Whetstine, J. R., A. Nottke, F. Lan, M. Huarte, S. Smolikov, Z. Chen, E. Spooner, E. Li, G. Zhang, M. Colaiacovo and Y. Shi, 2006. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467-481 https://doi.org/10.1016/j.cell.2006.03.028
  67. Wolffe, A. P. 1998. Chromatin: Structure and Function, Academic Press, SD
  68. Wolffe, A. P. and J. J. Hayes. 1999. Chromatin disruption and modification. Nuc. Acid. Res. 27, 711-720 https://doi.org/10.1093/nar/27.3.711
  69. Wu, J. and M. Grunstein. 2000. 25 years after the nucleosome model: chromatin modifications. Trends Biochem. Sci. 25, 619-623 https://doi.org/10.1016/S0968-0004(00)01718-7
  70. Wysocka, J., T. Swigut, T. A. Milne, Y. Dou, X. Zhang, A. L. Burlingame, R. G. Roeder, A. H. Brivanlou and C. D. Allis. 2005. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859-872 https://doi.org/10.1016/j.cell.2005.03.036
  71. Zegerman, P., B. Canas, D. Pappin and T. Kouzarides. 2002. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J. Biol. Chem. 277, 11621-11624 https://doi.org/10.1074/jbc.C200045200