DOI QR코드

DOI QR Code

인간 Spt16 단백질 발현과 세포 증식 사이의 연관성에 관한 연구

The expression of human Spt16 is associated with cell proliferation

  • 곽정숙 (인제대학교 약물유전체연구센터) ;
  • 조문주 (인제대학교 약물유전체연구센터) ;
  • 류민정 (인제대학교 약물유전체연구센터) ;
  • 오상택 (인제대학교 약물유전체연구센터)
  • Gwak, Jung-Sug (PharmcoGenomics Research Center, Inje University) ;
  • Cho, Mun-Ju (PharmcoGenomics Research Center, Inje University) ;
  • Ryu, Min-Jung (PharmcoGenomics Research Center, Inje University) ;
  • Oh, Sang-Taek (PharmcoGenomics Research Center, Inje University)
  • 발행 : 2007.03.30

초록

FACT(facilitates chromatin transcription)은 크로마틴을 주형으로 하는 전사에 필요한 크로마틴 특이적 전사 진행 인자이다. FACT는 Saccharomyces Cerevisiae Spt16/Cdc68의인간 유사체와 high mobility froup-1-like protein structure-specific recognition protein-1(SSRP-1)의 이종단백질 복합체이다 본 논문에서는 FACT의 단위체인 hSpt16의 발현이 휴지기의 T98G 세포에서 급격히 감소됨을 면역형광 분석법과 Western blot 분석법을 이용하여 관찰하였다. 이와 반대로 증식기의 T98C 세포에서는 hSpt16이 높은 수준으로 발현되고 있는 것이 관찰되었다. FACT의 또 다른 단위체 SSRP-1의 발현은 휴지기나 증식기의 세포에서 변화가 없음이 관찰되었다. 이상의 결과로부터 hSpt16이 발현이 세포의증식과 연관이 되어 있음을 알 수 있었고 세포 증식 표지 인자로 사용될 수 있을 것으로 사료된다.

Facilitates chromatin transcription (FACT) is a chromatin-specific elongation factor required for transcription of chromatin templates in vivo and in vitro. FACT consists of human homologue of the Saccharomyces cerevisiae Spt16/Cdc68 protein (hSpt16) and the high mobility group-1-like protein structure-specific recognition protein-1 (SSRP-1). Here we show that the protein level of hSpt16 is massively down-regulated in quiescent T98C cells using both immunofluorescence and western blot analysis. In contrast, we observe high level of the hspt16 expression in the proliferative T98G cells. Interestingly, the expression of SSRP-1 is not altered in both quiescent and proliferative states. Taken together, our findings implicate that the expression of hSpt16 is associated with the proliferative state and can be used as a proliferation marker.

키워드

참고문헌

  1. Hansen, J. C. 2002. Conformational Dynamics of the chromatin fiber in solution: determinants, mechanism, and function. Annu. Rev.Biophys. Bioml. Struct. 31, 361-369 https://doi.org/10.1146/annurev.biophys.31.101101.140858
  2. Workman, J. L. and R. G. Roeder. 1987. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51, 613-622 https://doi.org/10.1016/0092-8674(87)90130-9
  3. Izban, M. G. and D. S. Luse 1992. Factor-stimulated RNA polymeras II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates, J. Biol. Chem. 267, 13647-13655
  4. Cote, J., J. Quinn, J. L. Workman and C. L. Peterson 1994. Stimulation of GAL4 derivatives binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53-60 https://doi.org/10.1126/science.8016655
  5. Steger, D. J., R. T. Utley, P. A. Grant, S. John, A. Eberharter, J. Cote, T. Owern-Hughes, K. Ikeda and J. L. Workman. 1998. Regulation of transcription by multisubunit complexes that alter nucleosome structure. Cold Spring Harb Symp Quant Biol. 63, 483-491 https://doi.org/10.1101/sqb.1998.63.483
  6. Orphanides, G., G. LeRoy, C. H. Chang, D. S. Luse and D. Reinberg. 1998. FACT, a factor that facilitates transcript elongation through nucelosome. Cell 92, 105-116 https://doi.org/10.1016/S0092-8674(00)80903-4
  7. Malone, E. A., C. D. Clark, A. Chiang and F. Wnston. 1991. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccaromyces cerevisiae. Mol. Cell. Biol. 11, 5710-5717 https://doi.org/10.1128/MCB.11.11.5710
  8. Rowley, A., R. A Singer, G. C. Johnston. 1991. CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol. Cell. Biol. 11, 5718-5726 https://doi.org/10.1128/MCB.11.11.5718
  9. Bruhn, S. L., P. M. Pil, J. M. Essigmann, D. E. Housman and S. J. Lippard. 1992. Isolation and characteraization human cDNA clones encoding a high mobility froup box protein that recognizes structural distortions to DNA caused by binding of the anticancer agent cisplatin. Proc. Natl. Acad. Sci. USA 89, 2307-2311 https://doi.org/10.1073/pnas.89.6.2307
  10. Wittmeyer, J., T. Formosa. 1997. The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interact with Cdc68/ Spt16 and with Pob3, a protein silmilar to an HMG1-like protein. Mol. Cell. Biol. 17, 4178-4190 https://doi.org/10.1128/MCB.17.7.4178
  11. Santisteban, M., G. Arents, E. N. Moudrianakis and M. M. Smith. 1997. Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression. EMBO J. 16, 2493-2506 https://doi.org/10.1093/emboj/16.9.2493
  12. Orphanides, G., W. H. Wu, W. S. Lan, M. Hampsey and D. Reinberg. 1999. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins, Nature 400, 284-288 https://doi.org/10.1038/22350
  13. Belosterkovskaya, R., S. Oh, V. A Bondarenko, V. M. Studisky, G. Orphanides and D. Rinberg. 2003. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090-1093 https://doi.org/10.1126/science.1085703
  14. Formosa, T., S. Ruone, M. D. Adams, A. E. Olsen, P. Erikson, Y. Yu, A. R. Rhoades, P. K. Kaufman and D. J. Stillman. 2002. Defects in SPT16 or POB3 (yFACT) in Saccaromyces cerevisiae cause dependence on the Hir/Hpc pathway. Polymerase passage may degraded chromatin structure. Genetics 162, 1557-1571
  15. Lindstrom, D. L. and G. A.Hartzog. 2001. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD midifying enzymes in Saccharomyces cerevisiae. Genetics 159, 487-497
  16. Krogan, N. J., M. Kim, S. H. Ahn, G. Zhong, M. S. Kobor, G. Cagney, A. Emili, A. Shilatifard, S. Buratowski and, J. F. Greenblatt. 2002. RNA polymerase II elongation factors of Saccahromyces cerevisiae; a targeted proteomics approach. Mol. Cell. Biol. 22, 6979-6992 https://doi.org/10.1128/MCB.22.20.6979-6992.2002
  17. Squazzo, S. L., P. J. Costa, D. L. Lindstrom, K. E. Kumer, R. Simic, J. L. Jennings, A. J. Link, K. M. Arndt and G. A. Hartzog 2001. The paf1 complex physically and functioanlly associated with transcription elongation factors in vivo. EMBO J. 21, 1764-1774 https://doi.org/10.1093/emboj/21.7.1764
  18. Lindstrom, D. L., S. L. Squazzo, N. Muster, T. A. Burckin, K. C. Wachter, C. A. Emigh, J. A. McCleery, J. R. Yates, G. A. Hartzog. 2003. Dual roles for Spt5 in pre- mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol. Cell. Biol. 23, 1368-1378 https://doi.org/10.1128/MCB.23.4.1368-1378.2003
  19. Howe, L., D. Auston, P. Grant, S. John, R. G. Cook, J. L. Workman, L. Pilus. 2001. Histone H3 specific acetyl-transferases are essential for cell cycle progression. Genes Dev. 15, 3144-3154 https://doi.org/10.1101/gad.931401
  20. Polo, S. E., S. E. Theocharis, J. Klijanienko, A. Savignoni, B. Asselain, P. Vielh and G. Almouzni. 2004. Chromatin assembly factor-1, a marker of clinical value to distinguish quiescent from proliferating cells. Cancer Res. 64(7), 2371-2381 https://doi.org/10.1158/0008-5472.CAN-03-2893