DOI QR코드

DOI QR Code

Up-regulation of dynamin-2 gene expression in Ras-transformed cells

Ras에 의해 암화된 세포에서 dynamin-2의 발현 촉진

  • Yoo, Ji-Yun (Department of Microbiology/Research institute of Life Science, Gyeongsang National University)
  • 유지윤 (경상대학교 자연과학대학 미생물학전공/생명과학연구원)
  • Published : 2007.03.30

Abstract

Dynamin plays a key role in the scission event common to various types of endocytosis. It has been previously reported that the SH3 domain-mediated association of Grb2 with dynamin-2 was dominantly found in Ras transformed cells. However, whether this association results from the increased expression of dynamin-2 and Grb2 in Ras transformed cells or not is still unknown. So in this study we first analyzed the expression levels of dynamin-2 and Grb2 and found that the expression of dynamin-2 protein was dramatically increased in Ras-transformed NIH3T3 (NIH3T3(Ras)) cells. Furthermore competitive PCR data revealed that the mRNA transcripts for dynamin-2 were increased about 100-fold in NIH3T3(Ras) compared to those of NIH3T3 cells. However, the protein level and mRNA transcript of Grb2 were not changed in these two cells. We also examined promoter activity of dynamin-2 in NIH3T3(Ras) cells and suggest the existence of Ras-responsive sequence in promoter region -300 to -200.

Dynamin은 여러 종류의 endocytosis 과정에서 최종적으로 endocytic vesicle을 membrane으로부터 분리하는데 중요한 역할을 하는 단백질이다. 이전의 보고에 의하면 dynamin-2는 Ras에 의해 암화된 세포에서 Ras signal의 신호 전달 단백질인 Grb2의 SH3 domain과 결합한다고 알려져 있다. 하지만 정상적인 세포 (NIH3T3)에 비해 Ras에 의해 암화된 세포 (NIH3T3(Ras))에서 이들 단백질의 발현이 높아지는지에 대해서는 아직 알려진 바가 없다. 본 연구에서는 먼저 NIH3T3 세포와 NIH3T3(Ras) 세포에서 dynamin-2와 Grb2의 단백질 발현을 보았는데, dynamin-2의 경우 NIH3T3 세포에 비해 NIH3T3(Ras) 세포에서 그 발현이 현저히 증가함을 볼 수 있었지만 Grb2의 경우 두 세포에서 발현의 차이를 관찰할 수 없었다. Competitive PCR을 이용하여 mRNA의발현정도를 확인하였을 때, 단백질 발현 정도와 마찬가지로 dynamin-2의 경우 NIH3T3(Ras) 세포에서 약 100배의 증가를 확인하였지만 Grb2의 경우 차이를 볼 수 없었다. Dynamin-2의 promoter 활성을 NIH3T3(Ras) 세포에서 관찰한 결과 start codon으로부터 300 bp에서 200 bp upstream에 dynamin-2의 promoter 활성을 조절하는 부위가 존재함을 확인할 수 있었다.

Keywords

References

  1. Artalejo, C. R., M. A. Lemmon, J. Schlessinger and H. C. Palfrey. 1997. Specific role of the PH domain of dynamin-1 in the regulation of rapid endocytosis in adrenal chromaffin cells. EMBO J. 16, 1565-1574 https://doi.org/10.1093/emboj/16.7.1565
  2. Charvat, S., C. Le Griel, M. C. Chignol, D. Schmitt and M. Serres. 1999. Ras-transfection up-regulated HaCaT cell migration: inhibition by Marimastat. Clin. Exp. Metastasis 17, 677-685 https://doi.org/10.1023/A:1006709403193
  3. Chomczynski, P. 1993. A reagent for the single-step simulataneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532-537
  4. Cook, T. A., R. Urrutia and M. A. McNiven. 1994. Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc. Natl. Acad. Sci. USA 91, 644-648 https://doi.org/10.1073/pnas.91.2.644
  5. Downing, A. K., P. C. Driscoll, I. Gout, K. Salim, M. J. Zvelebil and M. D. Waterfield. 1994. Three-dimensional solution structure of the pleckstrin homology domain from dynamin. Curr. Biol. 4, 884-891 https://doi.org/10.1016/S0960-9822(00)00197-4
  6. Gibson, T. J., M. Hyvonen, A. Musacchio, M. Saraste and E. Birney. 1994. PH domain: the first anniversary. Trends Biochem. Sci. 19, 349-353 https://doi.org/10.1016/0968-0004(94)90108-2
  7. Gold, E. S., D. M. Underhill, N. S. Morrissette, J. B. Guo, M. A McNiven and A. Aderem. 1999. Dynamin 2 is required for phagocytosis in macrophages. J. Exp. Med. 190, 1849-1856 https://doi.org/10.1084/jem.190.12.1849
  8. Grabs, D., V. I. Slepnev, Z. Songyang, C. David, M. Lynch, L. C. Cantley and P. De Camilli. 1997. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J. Biol. Chem. 272, 13419-13425 https://doi.org/10.1074/jbc.272.20.13419
  9. Greig, R. G., T. P. Koestler, D. L. Trainer, S. P. Corwin, L. Miles, T. Kline, R. Sweet, S. Yokoyama and G. Poste. 1985. Tumorigenic and metastatic properties of 'normal' and ras-transfected NIH/3T3 cells. Proc. Natl. Acad. Sci. USA 82, 3698-3701 https://doi.org/10.1073/pnas.82.11.3698
  10. Jones, S. M., K. E. Howell, J. R. Henley, H. Cao and M. A. McNiven. 1998. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279, 573-577 https://doi.org/10.1126/science.279.5350.573
  11. Herskovits, J. S., H. S. Shpetner, C. C. Burgess and R. B. Vallee. 1993. Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc. Natl. Acad. Sci. USA 90, 11468-11472 https://doi.org/10.1073/pnas.90.24.11468
  12. Kato, K., S. Horiuchi, A. Takahashi, Y. Ueoka, T. Arima, T. Matsuda, H. Kato, J. J. Nishida, Y. Nakabeppu and N. Wake. 2002. Contribution of estrogen receptor alpha to oncogenic K-Ras-mediated NIH3T3 cell transformation and its implication for escape from senescence by modulating the p53 pathway. J. Biol. Chem. 277, 11217-11224 https://doi.org/10.1074/jbc.M107391200
  13. Kessels, M. M. and B. Qualmann. 2004. The syndapin protein family: linking membrane trafficking with the cytoskeleton. J. Cell Sci. 117, 3077-3086 https://doi.org/10.1242/jcs.01290
  14. Maier, O., M. Knoblich and P. Westermann. 1996. Dynamin II binds to the trans-Golgi network. Biochem. Biophys. Res. Commun. 223, 229-233 https://doi.org/10.1006/bbrc.1996.0876
  15. Miki, H., K. Miura, M. Koozi, T. Nakada, N. Hirokawa. S. Orita, K. Kaibuchi, Y. Takai and T. Takenawa. 1994. Association of Ash/Grb-2 with dynamin through the Src homology 3 domain. J. Biol. Chem. 269, 5489-5492
  16. Noda, Y., T. Nakata and N. Hirokawa. 1993. Localization of dynamin : widespread distribution in mature neurons and association with membranous organelles. Neuroscience 55, 113-127 https://doi.org/10.1016/0306-4522(93)90459-S
  17. Obar, R. A., C. A. Collins, J. A. Hammarback, H. S. Shpetner and R. B. Vallee. 1990. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347, 256-261 https://doi.org/10.1038/347256a0
  18. Schafer, D. A. 2004. Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5, 463-469 https://doi.org/10.1111/j.1600-0854.2004.00199.x
  19. Seedorf, K., G. Kostks, R. Lammers, P. Bashkin, R. Daly, W. H. Burgess, A. M. Van der Bliek, J. Schlessinger and A. Ullrich. 1994. Dynamin binds to SH3 domains of phospholipase C gamma and GRB-2. J. Biol. Chem. 269, 16009-16014
  20. Shpetner, H. S. and R. B. Vallee. 1992. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733-735 https://doi.org/10.1038/355733a0
  21. Shupliakov, O., P. Low, D. Grabs, H. Gad, H. Chen, C. David, K. Takei, P. De Camilli and L. Brodin. 1997. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259-263 https://doi.org/10.1126/science.276.5310.259
  22. Sontag, J. M., E. M. Fykse, Y. Ushkaryov, J. P. Liu, P. J. Robinson and T. C. Sudhof. 1994. Differential expression and regulation of multiple dynamins. J. Biol. Chem. 269, 4547-4554
  23. Stewart, S. and K. L. Guan. 2000. The dominant negative Ras mutant, N17Ras, can inhibit signaling independently of blocking Ras activation. J. Biol. Chem. 275, 8854-8862 https://doi.org/10.1074/jbc.275.12.8854
  24. Vidal., M., J. L. Montiel, D. Cussac, F. Cornille, M. Duchesne, F. Parker, B. Tocque, B. P. Roques and C. Garbay. 1998. Differential interactions of the growth factor receptor-bound protein 2 N-SH3 domain with son of sevenless and dynamin. Potential role in the Ras-dependent signaling pathway. J. Biol. Chem. 273, 5343-5348 https://doi.org/10.1074/jbc.273.9.5343
  25. Vojtek, A. B. and C. J. Der. 1998. Increasing complexity of the Ras signaling pathway. J. Biol. Chem. 273, 19925-19928 https://doi.org/10.1074/jbc.273.32.19925
  26. Wang, Z. and M. F. Moran. 1996. Requirement for the adapter protein GRB2 in EGF receptor endocytosis. Science 272, 1935-1939 https://doi.org/10.1126/science.272.5270.1935
  27. Warnock, D. E., L. J. Terlecky and S. L. Schmid. 1995. Dynamin GTPase is stimulated by crosslinking through the C-terminal proline-rich domain. EMBO J. 14, 1322-1328
  28. Yoon, S. Y., W. S. Koh, K. I. Lee, Y. M. Park and M. Y. Han. 1997. Dynamin II associates with Grb2 SH3 domain in ras transformed NIH3T3 cells. Biochem. Biophys. Res. Commun. 234, 539-543 https://doi.org/10.1006/bbrc.1997.6676
  29. Young, T., F. Mei, J. Liu, R. C. Bast, A. Kurosky and X. Cheng. 2005. Proteomics analysis of H-RAS-mediated oncogenic transformation in a genetically defined human ovarian cancer model. Oncogene 24, 6174-6184 https://doi.org/10.1038/sj.onc.1208753