DOI QR코드

DOI QR Code

Genetic Diversity and Population Structure of Liriope platyphylla (Liliaceae) in Korea

한국내 맥문동의 유전적 다양성과 집단 구조

  • Huh, Hong-Wook (Department of Biology Education, Busan National University) ;
  • Choi, Joo-Soo (Department of Molecular Biology, Dongeui University) ;
  • Lee, Bok-Kyu (Department of Molecular Biology, Dongeui University) ;
  • Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
  • 허홍욱 (부산대학교 생물교육과) ;
  • 최주수 (동의대학교 분자생물학과) ;
  • 이복규 (동의대학교 분자생물학과) ;
  • 허만규 (동의대학교 분자생물학과)
  • Published : 2007.03.30

Abstract

Genetic diversity and population structure of eleven Liriope platyphylla (Liliaceae) populations in Korea were determined using genetic variation at 20 allozyme loci. The percent of polymorphic loci within the enzymes was 55.9%. Genetic diversity at the species level and at the population level was high(Hes = 0.178; Hep = 0.168, respectively), whereas the extent of the population divergence was relatively low ($G_{ST}$ = 0.064). $F_{IS}$, a measure of the deviation from random mating within the 11 populations, was 0.311. Total genetic diversity values ($H_T$) varied between 0.0 and 0.535, giving an average over all polymorphic loci of 0.323. The interlocus variation in within population genetic diversity ($H_S$) was high (0.305). An indirect estimate of the number of migrants per generation (Nm = 3.66) indicates that gene flow is high among Korean populations of the species. In addition, analysis of fixation indices revealed a substantial heterozygosity deficiency in some populations and at some loci. Mean genetic identity between populations was 0.988. It is highly probable that directional toward genetic uniformity in a relatively the homogenous habitat is thought to be operated among Korean populations of L. platyphylla.

한국내 분포하는 맥문동(Liriope platyphylla) 11집단에 대한 20 알로자임 대립유전자좌위에서 유전적 다양성과 집단구조를 조사하였다. 효소내 다형성을 나타내는 빈도는 55.9%였다. 종과 집단 수준에서 유전적 다양도는 각각 0.178, 0.168로 높았으며, 집단간 분화 정도는 낮았다($G_{ST}$ = 0.064). 전체 11 집단에서 임의교배에 의한 편차는 0.311이였다. 전체 유전적 다양성는 $0{\sim}0.535$였다. 유전적 다양도 중 집단내 변이는 높았다($H_S$ = 0.305). 세대간 이주하는 개체수는 약 3.66으로 이 종의 한국내 집단간 유전자 흐름이 높음을 시사한다. 또한 라이트의 고정지수 분석 결과 많은 대립유전자좌위와 집단에서 이형접합자의 결핍이 존재하고 있었다. 집단간 유전적 동질성은 0.988이였다. 이는 맥문동의 분포지가 한국내 유사한 환경에 놓여 있고 집단이 방향적 동질성을 가지고 있음을 시사한다.

Keywords

References

  1. Barton, N. H. and M. Slatkin. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subpopulation. Heredity 56, 409-415 https://doi.org/10.1038/hdy.1986.63
  2. Bayer, R. J. 1990. Patterns of clonal diversity in the Antennaria rosea (Asteraceae) polyploid agamic complex. Am. J. Bot. 77, 1313-1319 https://doi.org/10.2307/2444591
  3. Brown, A. H. D. 1989. Genetic Characterization of Plant Mating Systems, pp. 145-162, In Brown, A. H. D., M. T. Clegg, A. L. Kahler and B. S. Weir (eds.), Plant Population Genetics, Breeding and Genetic Resources, Sinauer Associates, Sunderland, MA
  4. Cook, R. E. 1983. Clonal plant populations. Am. Sci. 71, 244-253
  5. Doebley, J. 1989. Isozymic Evidence and the Evolution of Crop Plants, pp. 165-191, In Soltis, D. E. and P. Soltis (eds.), Isozymes in Plant Biology, Plenum Press, NY
  6. Ellstrand, N. C. and M. L. Roose. 1987. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74, 123-131 https://doi.org/10.2307/2444338
  7. Escalante, A. M., L. E. Eguiate and D. Pinero. 1994. Genetic structure and mating systems in wild and cultivated populations of Phaseolus coccineus and P. vulgaris (Fabaceae). Am. J. Bot. 81, 1096-1103 https://doi.org/10.2307/2445471
  8. Geps, P., T. C. Osborn, K. Rashka and F. A. Bliss. 1986. Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for mutiple centers of domestication. Economic Bot. 40, 451-468 https://doi.org/10.1007/BF02859659
  9. Gottlieb, L. D. 1977. Electrophoretic evidence and plant systematics. Ann. Missouri Bot. Gardens 65, 164-180
  10. Gottlieb, L. D. 1981. Electrophoretic evidence and plant populations. Progr. Phytochem. 7, 1-46
  11. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme Diversity in Plant Species, pp. 304-319, In Brown, A. H. D., M. T. Clegg, A. L. Kahler, and B. S. Weir (eds.), Plant Population Ggenetics, Breeding and Genetic Resources, Sinauer Associates, Sunderland, MA
  12. Hamrick, J. L., M. J. W. Godt and S. L. Sherman-Broyles, 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95-124 https://doi.org/10.1007/BF00120641
  13. Hartnett, D. C. and F. A. Bazzaz. 1985. The regulation of leaf, ramet and gene densities in experimental populations of the rizomatous perennial Solidago canadensis. J. Ecol. 73, 429-443 https://doi.org/10.2307/2260485
  14. Huh, M. K., S. D. Chung and H. W. Huh. 1998. Allozyme variation and population structure of Pyrola japonicain Korea. Bull. Acad. Bot. Bull. Acad. Sin. 39, 107-112
  15. Kumar, S., K. Tamura and M. Nei. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence aligment. Brief. Bioinform. 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  16. Li, C. C. and D. G. Horrvitz. 1953. Some methods of estimating the inbreeding coefficient. Am. J. Human Genet. 5, 107-117
  17. Loveless, M. D. and J. L. Hamrick, 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15, 65-95 https://doi.org/10.1146/annurev.es.15.110184.000433
  18. Murawski, D. A. and J. L. Hamrick. 1990. Local genetic and clonal structure in the tropical terrestrial bromelid, Aechmea magdalenae. Am. J. Bot. 77, 1201-1208 https://doi.org/10.2307/2444631
  19. Nei, M. 1972. Genetic distance between populations. Am. Nat. 106, 282-292
  20. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70, 3321-3323 https://doi.org/10.1073/pnas.70.12.3321
  21. Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann. Human Genet. 41, 225-233 https://doi.org/10.1111/j.1469-1809.1977.tb01918.x
  22. Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39, 53-65 https://doi.org/10.2307/2408516
  23. Sobey, D. G. and P. Barkhouse. 1977. The structure and rate growth of the rhizome of some forest herbs and dwarf herbs of the New Brunswick-Nova Scotia border region. Can. Field-Natl. 91, 377-383
  24. Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27 https://doi.org/10.2307/1546611
  25. Weeden, N. F. and J. F. Wendel. 1989. Genetics of Plant Isozymes, pp. 42-72, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Plenum Press, NY
  26. Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420 https://doi.org/10.2307/2406450

Cited by

  1. RedLiriope platyphyllastimulated the insulin secretion through the regulation of calcium concentration in rat insulinoma cells and animal models vol.29, pp.2, 2013, https://doi.org/10.5625/lar.2013.29.2.84
  2. Community Structure and Habitat Environment of Genus Liriope Group in Korea vol.19, pp.1, 2011, https://doi.org/10.7783/KJMCS.2011.19.1.024
  3. Antioxidative Activity of Beverage with Water and Ethanol Extracts of Maegmundong (Liriope platyphylla) vol.30, pp.6, 2014, https://doi.org/10.9724/kfcs.2014.30.6.785
  4. Toxicity of redLiriope platyphyllamanufactured by steaming process on liver and kidney organs of ICR mice vol.28, pp.4, 2012, https://doi.org/10.5625/lar.2012.28.4.229
  5. Effects of Liriopis Tuber on 4-HNE-induced Apoptosis in PC-12 Cells vol.28, pp.2, 2013, https://doi.org/10.6116/kjh.2013.28.2.33
  6. Sonochemical Green Synthesis of Yttrium Oxide (Y2O3) Nanoparticles as a Novel Heterogeneous Catalyst for the Construction of Biologically Interesting 1,3-Thiazolidin-4-ones vol.147, pp.10, 2017, https://doi.org/10.1007/s10562-017-2168-4
  7. Differential effects of the steaming time and frequency for manufactured red Liriope platyphylla on nerve growth factor secretion ability, nerve growth factor receptor signaling pathway and regulation of calcium concentration vol.6, pp.5, 2012, https://doi.org/10.3892/mmr.2012.1024
  8. Effects of the roots of Liriope Platyphylla Wang Et tang on gastrointestinal motility function vol.184, 2016, https://doi.org/10.1016/j.jep.2016.03.012
  9. Effects of Steaming Time and Frequency for Manufactured RedLiriope platyphyllaon the Insulin Secretion Ability and Insulin Receptor Signaling Pathway vol.27, pp.2, 2011, https://doi.org/10.5625/lar.2011.27.2.117
  10. Aqueous extract ofLiriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats vol.28, pp.3, 2012, https://doi.org/10.5625/lar.2012.28.3.181
  11. Aqueous Extracts of Liriope platyphylla Are Tightly-Regulated by Insulin Secretion from Pancreatic Islets and by Increased Glucose Uptake through Glucose Transporters Expressed in Liver Hepatocytes vol.19, pp.3, 2011, https://doi.org/10.4062/biomolther.2011.19.3.348
  12. Red Liriope platyphylla contains a large amount of polyphenolic compounds which stimulate insulin secretion and suppress fatty liver formation through the regulation of fatty acid oxidation in OLETF rats vol.30, pp.4, 2012, https://doi.org/10.3892/ijmm.2012.1081