DOI QR코드

DOI QR Code

Morphological characteristics and genetic diversity of Calanthe species native to Korea

한국 자생 새우난초의 형태적 특성 및 유전적 다양성

  • Cho, Dong-Hoon (Department of Horticulture, Kyungpook National University) ;
  • Choi, Young-Whan (School of bioresource science, College of natural resoure & life sciences, Pusan National University) ;
  • Kang, Jum-Soon (School of bioresource science, College of natural resoure & life sciences, Pusan National University) ;
  • Lee, Yong-Jae (School of bioresource science, College of natural resoure & life sciences, Pusan National University) ;
  • Choi, In-Soo (School of bioresource science, College of natural resoure & life sciences, Pusan National University) ;
  • Lee, Young-Geun (School of applied life science, College of natural resoure & life sciences, Pusan National University) ;
  • Jee, Sun-Ok (Department of Cosmetic science, Joongbu Uniersity) ;
  • Kim, Kyung-Min (Department of Environmental Horticulture, Sangju National University) ;
  • Son, Beung-Gu (School of bioresource science, College of natural resoure & life sciences, Pusan National University)
  • 조동훈 (경북대학교 원예학과) ;
  • 최영환 (부산대학교 생명자원과학부) ;
  • 강점순 (부산대학교 생명자원과학부) ;
  • 이용재 (부산대학교 생명자원과학부) ;
  • 최인수 (부산대학교 생명자원과학부) ;
  • 이영근 (부산대학교 생명응용과학부) ;
  • 지선옥 (중부대학교 화장품과학과) ;
  • 김경민 (상주대학교 환경 원예학과) ;
  • 손병구 (부산대학교 생명자원과학부)
  • Published : 2007.03.30

Abstract

This study was conducted to research the morphological characteristics and analyze the genetic diversity by using RAPD in Calanthe species native to Korea. Nine samples were selected by flower color and 19 morphological characteristics. In the length and width of leaf, dorsal sepal, the lateral sepal, the petal, the central lip, and the lateral lip, C. discolor was the shortest and narrowest, respectively, but C. sieboldii was the longest and the widest, respectively. The flower stalk length was the shortest in C. discolor, and the longest in C. sieboldii. Three variants were the intermediate between C. discolor and C. sieboldii in the above morphological characteristics, but spur length was the longest in C. discolor, the shortest in C. sieboldii, and intermediate in the variants. The ovary length in C. discolor was shortest and C. sieboldii and variants were similar with each other. The flower color of C. discolor were brownish red, the value of CIE Lab was between 40 and 50. The flower color of C. sieboldii was yellowish, the value of CIE Lab was between 110 and 130. And variants had various colors between 50 to 70 in the value of CIE Lab. By analyzing multiple band patterns of PCR products, 154 bands were selected as polymorphic RAPD markers. The analysis of genetic similarity of Calanther species using RAPD showed that C. discolor and C. sieboldii are more distant from each other than variants, and these results demonstrated that genetic position of variants located between C. discolor and C. sieboldii.

본 연구는 자생 새우난초의 형태적 특성을 조사하고, RAPD법을 이용하여 유전적 다양성을 분석하고자 수행되었다. 자생지에서 화색을 포함한 19가지의 형태적 특성 분류 기준에 따라 새우난초, 금새우난초, 변이종을 각각 3종류씩 9종류를 선발하였다. 잎의 길이와 넓이, 주판(dorsal sepal), 부판(lateral sepal), 꽃잎(petal), 중심 설(central lip),측면 설(lateral lip)은 길이와 넓이에 있어서 새우난초가 가장 짧고 좁았으며, 금새우난초가 가장 길고 넓었다. 화경(flower stalk)의 길이는 새우난초가 가장 짧았고, 금새우난초가 가장 길었으며, 변이종은 위의 각기관의 길이와 넓이에 있어서 새우난초와 금새우난초의 중간정도였다 그러나 거(spur)의 길이는 새우난초가 가장 길었으며, 변이종, 금새우난초의 순이었다. 자방(ovary)의 길이는 새우난초가 가장 짧았고, 금새우난초와 변이종은 비슷하였다. 새우난초의 화색은 CIE Lab 값이 40에서 50사이의 갈색계통이었으며, 금새우난초는 CIE Lab값이 110에서 130사이의 밝은 황색계통이었다. 변이종은 CIE tab 값이 50에서 70사이의 다양한 색을 나타내었다. 유전적 유연관계를 조사하기 위하여 multiple band의 양상을 분석한 결과, 총 305개의 band 중 154개의 polymorphic band를 선발하였다. 이들의 유연관계는 새우난초와 금새우난초가 가장 멀어 새우난초와 금새우난초는 다른 종에 속해있음을 알 수 있었고, 변이종은 유전적으로 새우난초와 금새우난초의 중간에 위치하고 있음을 알 수 있었다.

Keywords

References

  1. Belaj, A., E. Satovic, L. Rallo and J. Trujillo. 2002. Genetic diversity and relationships in olive(Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA . Theor. Appl. Genet. 105, 638-644 https://doi.org/10.1007/s00122-002-0981-6
  2. Dudley, J. W. 1994. Comparison of genetic distance estimators using molecular marker data. Proc ASHS/CSSA Symp on Analysis of Molecular Marker Data: 37
  3. Dweikat, I., S. Mackenzie, M. Levy and H. Ohm. 1993. Pedigree assessment using RAPD-DGGE in cereal crop species. Theor. Appl. Genet. 85, 497-505
  4. Fisher, M. and D. Matthies. 1998. RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica. American Journal of Botany 85, 811-819 https://doi.org/10.2307/2446416
  5. Fisher, M., R. Husi, D. Prati, M. Peintinger, M. Kleunen and B. Schmid. 2000. RAPD variation among and within small and large populations of the rare clonal plant Ranunculus repens. American Journal of Botany 87, 1128-1137 https://doi.org/10.2307/2656649
  6. Han, S. H., Y. H. Jung, M. H. Ko, Y. S. Oh, S. C. Koh, M. H. Kim and M. Y. Oh. 1998. Phylogenetic relationships of the Dendropanax morbifera and D. trifidus based on PCR-RAPD. Korean J. Genetics 20, 173-181
  7. Hotsunimi, T. R., K. Ogani, A. Y. Hosika, N. Yamazaki, A. Nitsuta and M. N. Yanagi. 1989. Useful plants of the world. Peongbu publishing company. Tokyo, Japan. pp. 190-191
  8. Hu, J. and C. F. Quiros. 1991. Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep. 10, 505-511
  9. Hyun, M. R., J. Y. Choi, J. N. Suh, I. S. So and J. S. Lee. 1999. Studies on distributions and morphological characteristics of Calanthe discolor, C. sieboldii, and C. bicolor native to Cheju province. Kor. J. Hort. Sci. Technol. 17, 498-500
  10. Keil, M. and A. R. Griffin. 1994. Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus. Theor. Appl. Geneti. 89, 442-450
  11. Kim, B. C., M. H. Kim and M. Y. Oh. 1990. A taxonomic study on Calanthe in Cheju island - A comparative study on isozyme by electrophoresis. Kor. J. Plant Tax. 20, 53-64 https://doi.org/10.11110/kjpt.1990.20.1.053
  12. Kim, Y. S. and S. H. Kim. 1989. A taxonomic study on Calanthe in Korea. Kor. J. Plant Tax. 19, 273-287 https://doi.org/10.11110/kjpt.1989.19.4.273
  13. Koller, B., A. Lehmann, J. M. McDermott and C. Gessler. 1993. Identification of Apple cultivars using RAPD markers. Theor. Appl. Genet. 85, 901-904
  14. Lashermes, P., P. Trouslot, F. Anthony, M. C. Combes and A. Charrier. 1996. Genetic diversity for RAPD markers between cultivated and wild accession of Coffea arabica. Euphytica 87, 59-64 https://doi.org/10.1007/BF00022965
  15. Lavi, U., P. Cregan, T. Schaap and J. Hillel. 1994. Application of DNA markers for identification and breeding of perennial fruit crops. Plant Breed Rev. 12, 195-226
  16. Liberty Hyde Bailey Hortorium. 1976. Hortus third: A concise dictionary of plant cultivated in the United states and Canada. 3rd edition, McMillan publishing company, New York. pp, 353-354, 795-796
  17. Martin, G. B., J. C. K. Williams and S. D. Tanksley. 1991. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and nearisogenic accessions. Proc Natl Acad Sci USA 88, 2336-2340 https://doi.org/10.1073/pnas.88.6.2336
  18. Michelmore, R. W., I. Paran and R. V. Kesseli. 1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc. Natl. Acad. Sci. USA 88, 9828-9832 https://doi.org/10.1073/pnas.88.21.9828
  19. Munsell, A. H. 1923. A Color Notation. Munsell Color Company, Baltimore, USA
  20. Orchid and Life. 1990. The beauty of Calanthe species. The magazine of orchid and life. seoul, Korea 77, 82-86
  21. Perez, T., J. Albornoz and A. Dominguez. 1998. An evaluation of RAPD fragment reproducibility and nature. Molecular Ecology 7, 1347-1357 https://doi.org/10.1046/j.1365-294x.1998.00484.x
  22. Perron, M., A. G. Gordon and J. Bousquet. 1995. Species specific RADP fingerprints for the closely related Picea mariana and P. rubens. Theor, Appl, Genet. 91, 142149
  23. Pillay, M. and S. T. Kenny. 1996. Random amplified polymorphic DNA (RAPD) markers in hop, Humulus lupulus: level of genetic variability and segregation in F1 progeny. Theor. Appl. Genet. 92, 334-339 https://doi.org/10.1007/BF00223676
  24. Reiter, R. S., J. G. K. Williams, K. A. Feldman, J. A. Rafalski, S. A. Tingey and P. A. Scolnik. 1992. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred accessions and random amplified polymorphic DNAs. Proc. Natl. Acad. Sci. USA 89, 1477-1481 https://doi.org/10.1073/pnas.89.4.1477
  25. Rohlf, F. J. 1998. NTSYS: Numerical taxonomy and multivariate analysis system. Dept. of ecology and evolution. State university of New York
  26. Song, J. H., N. S. Kim, Y. J. Kim, J. M. Song and J. S. Yi. 2002. Genetic variation of Quercus variabilities in Korea based on RAPD marker analysis. Korean J. Genetics 24, 189-195
  27. Stiles, J. L., C. Lemme, S. Souder, M. B. Morshidi and R Manshardt, 1993. Using randomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars Theor. Appl. Genet. 85, 697-701
  28. Stuber, C. W. 1992. Biochemical and molecular markers in plant breeding. Plant Breed Rev. 9, 37-61
  29. Williams, J. G. K, A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Research 18, 6531-6535 https://doi.org/10.1093/nar/18.22.6531
  30. Yang, X and C. Quiros. 1993. Identification of celery cultivars with RAPD markers. Thero. Appl. Genet. 86, 205-212
  31. Yoon, P. S. 1990. The wild plants of Korea. Nongwoo press. Seoul, Korea. pp. 52-53

Cited by

  1. Analyses of genetic diversity and relationships in four Calanthe taxa native to Korea using AFLP markers vol.54, pp.2, 2013, https://doi.org/10.1007/s13580-013-0168-x
  2. Survey of the Incidence of Viral Infections in Calanthe spp. and Characterization of a GW Isolate of Cymbidium mosaic virus in Korea vol.22, pp.2, 2016, https://doi.org/10.5423/RPD.2016.22.2.65
  3. Genetic relationships between KoreanCalanthespecies and some naturally occurring mutants based on multiple DNA markers vol.31, pp.6, 2013, https://doi.org/10.1111/j.1756-1051.2013.00152.x