DOI QR코드

DOI QR Code

생물방제능과 식물성장촉진능을 동시에 가지는 Bacillus licheniformis K11의 non-siderophore 항진균 물질 및 cellulase의 생산조건 확인

Confirmation of Non-Siderophore Antifugal Substance and Cellulase from Bacillus lichemiformis Kll Containing Antagonistic Ability and Plant Growth Promoting Activity

  • 우상민 (영남대학교 응용미생물학과) ;
  • 김상달 (영남대학교 응용미생물학과)
  • Woo, Sang-Min (Department of Applied Microbiology, Yeungnam University) ;
  • Kim, Sang-Dal (Department of Applied Microbiology, Yeungnam University)
  • 발행 : 2007.07.30

초록

Auxin, siderophore, 그리고 cellulase를 동시에 생산하는 생물방제균주 B. licheniformis Kll을 식물병원성진균을 대상으로 균사 성장억제능을 확인결과 6종의 식물병원성 진균에서 균사체 성장억제능을 확인하였으며, 그 중에서 토마토 시들음병을 유발하는 F. oxysporum(KACC 40037)에 가장 강력한 억제능을 나타내었다. 그리고 본 균주가 생산하는 항진균성 siderophore이외에 세포벽이 cellulose로 구성된 P. capsici의 cell wall을 분해하는 cellulase를 생산하는 것을 추가적으로 확인하였다. 뿐만아니라 B. licheniformis Kll은 nutrient broth(pH 8.0), $30{\circ}C$에서 96시간 배양시 토마토 시들음병에 대한 항진균 활성이 가장 높았고, 이는 cellulase의 활성과 sideropore의 최대 생산조건과는 상이하였다. 또한 탄소원과 질소원으로 starch와 urea를 각각 첨가시 항진균성 활성이 가장 높았고, 이 역시는 cellulase의 활성과 항진균성 siderophore의 최대 생산조건과 일치하지 않았다. 그리하여 본균주 B. licheniformis Kll은 식물성장촉진 물질은 auxin, 항진균성 siderophore와 cellulase를 생산함과 동시에 또 다른 강력한 항진균성 물질을 생산하는 것을 추가로 확인하였다.

Bacillus lichemiformis Kll, a plant growth promoting rhizobacterium was reported as a producer of auxin, siderophore, as well as antifungal cellulase under some culture conditions. In vitro test, B. licheniformis Kll represented excellent antagonistic ability against Fusarium oxyspoum (KACC 40037), and showed broad spectrum against other phytopathogenic fungi. B. licheniformis Kll had cellulolytic activity toward not only carboxymethyl-cellulose (CMC) but also insoluble cellulose, such as fungal cell wall cellulose, filter paper (Whatman No. 1), and Avicel. In addition, we confirmed antifungal substance production by butanol-extract methods. The strain produced optimally the antifungal substance when it was cultivated at pH 9.0, 30${\circ}$C for 4 days on nutrient medium. The biological control mechanisms of B. lichemiformis Kll were caused by antifungal substance, cellulase and siderophore against phytopathogenic fungi.

키워드

참고문헌

  1. Arnow, L. E. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol Chem. 118, 531-537.
  2. Chung, Y. C., Y. W. Kim, S. K. Kang, J. S. Rho, J. H. Park and N. K. Sung. 1991. Cloning of thermophilic alkalophilic Bacillus sp. F204 cellulase gene and its expression in Escherichia coli and Bacillus subiilis. Kor. J. Food. Sci. Technol. 23, 31-36.
  3. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microiol. 41, 109-117. https://doi.org/10.1139/m95-015
  4. Glick, B. R., C. L. Patten, G. Patten and D. M. Penrose. 1999. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press. Canada.
  5. Han, K. H., C. U. Lee and S. D. Kim. 1999. Antagonistic role of chitinase and antibiotic produces by Promicromonospora sp. KH-28 toward F. oxysporum. Kor. J. Appl. Microbial. Biotechnol. 27, 349-353.
  6. Jung, H. K., J. C. Ryoo and S. D. Kim. 2005. A muti-microbial biofungicide for the biological control against several important plant pathogenic fungi. J. Kor. Soc. Appl. Biol. Chem. 48, 40-47.
  7. Jung, H. K., J. R. Kim, S. M. Woo and S. D. Kim. 2006. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has sideruphure-Producing biocontrol activity. Kor. J. Microbiol. Biotechnol. 34, 94-100.
  8. Jung, H. K, J. R. Kim, S. M. Woo and S. D. Kim 2007. Selection of the auxin, siderophore, and cellulase-producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanisms. J. Kor. Soc. Appl. Biol. Chem. 50, 23-28.
  9. Kang, S. J., J. H. Kim and G. J. Joo, 2005. Isolation of antagonistic bacteria against Fusarium oxysporum and physicochemical properties of compost mixed with microbial formulation. Kor. J. Hort. Sci. Technol. 23, 342-350.
  10. Katz, E. and A. L. Demain. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41, 449-474.
  11. Kim, S. S, S. W. Kwom, S. Y. Lee, S. J. Kim, B. S. Koo, H. Y. Weon, B. Y. Kim, Y. S. Yeo, Y. H. Lim and S. H. Yoon. 2006. Taxonomy of a soil bacteria YNB54 strain which shows specific antagonistic activities against plant pathogenic Phytophthora spp. J. Microbial. Biotechmol. 34, 101-108.
  12. Kloepper, J. W. and C. M. Ryu. 2006. Bacterial endophytes as elicitors of induced systenlic resistance, p. 34-52. In B. Schulz, C. Boyle, and T. N. Sieber (eds.), Microbial Root Endophytes. Spring-verlag, Berlin Heidelberg.
  13. Kloepper, J. W., C. M. Ryu and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94, 1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  14. Kumar, R., J. S. Dahiya, D. Singh and P. Nigam. 2000. Production of endo-1, 4-$\beta$-glucanase by a biocontrol fungus Cladorrhinum foecundissimu. Bioresour. Technol. 75, 95-97. https://doi.org/10.1016/S0960-8524(00)00037-7
  15. Lee, E. T. and S. D. Kim. 2000. Selection and antifungal activity of antagonistic bacterium pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 28, 334-340.
  16. Lee, I. K., C. J. Kim, S. D. Kim and I. D. Yoo. 1990. Antifungal antibiotic against fruit rot disease of red pepper form Streptomyces parvullus. Kor. J. Appl. Microbiol. Biotechnol. 18, 142-147.
  17. Lee, J. M., E. S. Do, S. B. Baik and S. C. Chun. 2003. Effect of organic amendments on efficacy of biological control of seedling damping-off of cucumber with several microbial products. Kor. J. Mycology 31, 44-49 https://doi.org/10.4489/KJM.2003.31.1.044
  18. Lee, S. Y., S. B. Lee, Y. K. Kim and H. G. Kim. 2004. Effect of agrochemicals on mycelial growth and spore gennination of a hyperparasite, Ampelomyces quisqualis 94013 for controlling cucumber powdery mildew. Kor. J. Pesti. Sci. 8, 71-78.
  19. Lim, J. H, H K. Jung and S. D. Kim. 2007. An antifungal agent produced by Bacillus thuringiensis BK4, an antagonistic bacterium against Fusarium wilt disease of tomato. J. Kor. Soc. Appl. Biol. Chem. 50, 18-22.
  20. Lim, S. T., Y. Y. Park, S. J. Cho and H D. Yun, 1997. Phytopathgenicity of Enotnia carotovora subsp. carotovora LY34 and production of CMCase isozymes. Kor. J. Appl. Microbiol. Biotechnol. 25, 468-476.
  21. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  22. Neilands, J. B. 1984. Siderophores of bacteria and fungi. Microbiol. Sci. 1, 9-14.
  23. Ping, L. and W. Boland. 2004. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Pla. Sic. 9, 263-266. https://doi.org/10.1016/j.tplants.2004.04.008
  24. Woo, S. M., H. K. Jung and S. D. Kim. 2006. Cloning and characterization of a cellulase gene from a plant growth promoting rhizobacterium, Bacillus subtilis AH18 against phytophthora blight disease in red-pepper. Kor. J. Microbiol. Biotechnol. 34, 311-317.
  25. Yun, G. H., E. T. Lee and S. D. Kim. 2001. Identification and antifungal antagonism of Chryseomonas luteola 5042 against Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 29, 186-193.

피인용 문헌

  1. Selection and Characterization of Bacillus licheniformis MH48 for the Biocontrol of Pine Wood Nematode (Bursaphelenchus xylophilus) vol.104, pp.3, 2015, https://doi.org/10.14578/jkfs.2015.104.3.512
  2. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53 vol.46, pp.1, 2010, https://doi.org/10.1016/j.enzmictec.2009.07.009
  3. Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens vol.110, 2017, https://doi.org/10.1016/j.micpath.2017.07.027
  4. Characterization of Acidic Carboxymethylcellulase Produced by a Marine Microorganism, Psychrobacter aquimaris LBH-10 vol.20, pp.4, 2010, https://doi.org/10.5352/JLS.2010.20.4.487